CMSC 451: Closest Pair of Points

Slides By: Carl Kingsford

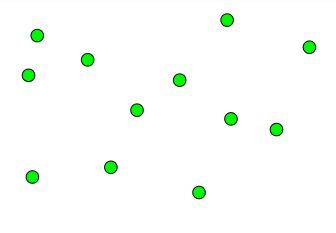
Department of Computer Science University of Maryland, College Park

Based on Section 5.4 of Algorithm Design by Kleinberg & Tardos.

Finding closest pair of points

Problem

Given a set of points $\{p_1, \ldots, p_n\}$ find the pair of points $\{p_i, p_j\}$ that are closest together.



Goal

• Brute force gives an $O(n^2)$ algorithm: just check ever pair of points.

 Can we do it faster? Seems like no: don't we have to check every pair?

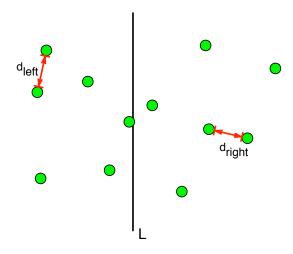
• In fact, we can find the closest pair in $O(n \log n)$ time.

• What's a reasonable first step?

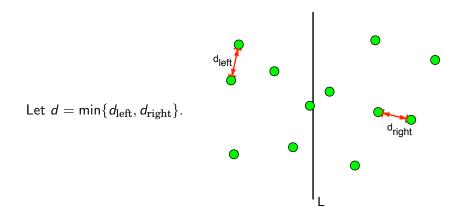
Divide

Split the points with line \boldsymbol{L} so that half the points are on each side.

Recursively find the pair of points closest in each half.



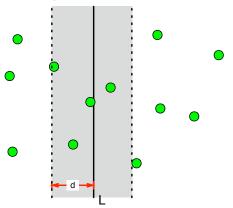
Merge: the hard case



d would be the answer, except maybe L split a close pair!

Region Near L

If there is a pair $\{p_i, p_j\}$ with $\operatorname{dist}(p_i, p_j) < d$ that is split by the line, then both p_i and p_j must be within distance d of L.



Let S_y be an array of the points in that region, sorted by decreasing y-coordinate value.

Slab Might Contain All Points

- Let S_y be an array of the points in that region, sorted by decreasing y-coordinate value.
- S_y might contain all the points, so we can't just check every pair inside it.

Theorem

Suppose $S_y = p_1, \dots, p_m$. If $dist(p_i, p_j) < d$ then $j - i \le 15$.

In other words, if two points in S_y are close enough in the plane, they are close in the array S_y .

Proof, 1

Divide the region up into squares with sides of length d/2:

d /2 →	ŀ		
•	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

How many points in each box?

Proof, 1

Divide the region up into squares with sides of length d/2:

← d/2 →				
•	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14	15	

How many points in each box?

At most 1 because each box is completely contained in one half and no two points in a half are closer than d.

Proof, 2

Suppose 2 points are separated by > 15 indices.

d /2 →	ŀ	1	
•	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

- Then, at least 3 full rows separate them (the packing shown is the smallest possible).
- But the height of 3 rows is > 3d/2, which is > d.
- So the two points are father than d apart.

Linear Time Merge

Therefore, we can scan S_y for pairs of points separated by < d in linear time.

```
ClosestPair(Px, Py):
if |Px| == 2: return dist(Px[1], Px[2])
                                          // base
d1 = ClosestPair(FirstHalf(Px,Py)) // divide
d2 = ClosestPair(SecondHalf(Px,Py))
d = min(d1,d2)
Sy = points in Py within d of L // merge
For i = 1, ..., |Sy|:
   For j = 1, ..., 15:
       d = min( dist(Sy[i], Sy[j]), d )
Return d
```

Total Running Time

Total Running Time:

- Divide set of points in half each time:
 O(log n) depth recursion
- Merge takes O(n) time.
- Recurrence: $T(n) \le 2T(n/2) + cn$
- Same as MergeSort $\implies O(n \log n)$ time.