CMSC 451: Closest Pair of Points

Slides By: Carl Kingsford

JERSIF
R ¥
9 %

18 }ia

R
Department of Computer Science
University of Maryland, College Park

Based on Section 5.4 of Algorithm Design by Kleinberg & Tardos.

Finding closest pair of points

Problem

Given a set of points {p1,...,pn} find the pair of points {p;, p;}
that are closest together.

Goal

Brute force gives an O(n?) algorithm: just check ever pair of
points.

Can we do it faster? Seems like no: don't we have to check
every pair?

In fact, we can find the closest pair in O(nlog n) time.

What's a reasonable first step?

Divide
Split the points with line L so that half the points are on each side.

Recursively find the pair of points closest in each half.

dIeft (@)

Merge: the hard case

o
dieft
: .f .
@)
Let d = min{djef, dright}- 9 ."*I.
drigh’t
o @)
@)
L

e d would be the answer, except maybe L split a close pair!

Region Near L

If there is a pair {pj, pj} with dist(p;, pj) < d that is split by the
line, then both p; and p; must be within distance d of L.

o | o
EO] (@)
® !
© .
Q .
e
® . :
. o
T
) L

Let S, be an array of the points in that region, sorted by
decreasing y-coordinate value.

Slab Might Contain All Points

e Let S, be an array of the points in that region, sorted by
decreasing y-coordinate value.

e 5, might contain all the points, so we can't just check every
pair inside it.

Theorem

Suppose S, = p1,. .., pm. If dist(pi,p;) < d then j — i < 15.

In other words, if two points in S, are close enough in the plane,
they are close in the array S, .

Proof, 1

Divide the region up into squares with sides of length d/2:

f= di2 -}

1

12

13

How many points in each box?

Proof, 1

Divide the region up into squares with sides of length d/2:

e di2 =}
‘ 1 2 3 . .
How many points in each box?
4 5 6 7 .
At most 1 because each box is
completely contained in one half
8 ° 10 " and no two points in a half are
closer than d.
12 13 14 15

Proof, 2

Suppose 2 points are separated by > 15 indices.

fe-dr2 >}

©

1

12

13

e Then, at least 3 full rows
separate them (the packing
shown is the smallest
possible).

e But the height of 3 rows is
> 3d/2, which is > d.

e So the two points are father
than d apart.

Linear Time Merge

Therefore, we can scan S, for pairs of points separated by < d in
linear time.

ClosestPair(Px, Py):
if |Px| == 2: return dist(Px[1],Px[2]) // base

dl = ClosestPair(FirstHalf (Px,Py)) // divide
d2 = ClosestPair(SecondHalf (Px,Py))
d = min(d1,42)

Sy = points in Py within 4 of L // merge
For i = 1,...,I8yl:
For j=1,...,15:
d = min(dist(Syl[i]l, Sy[jl), d)
Return d

Total Running Time

Total Running Time:

e Divide set of points in half each time:
O(log n) depth recursion

e Merge takes O(n) time.
e Recurrence: T(n) <2T(n/2)+ cn

e Same as MergeSort = O(nlog n) time.

	Closest Pair of Points

