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Geometry: points, lines, ...

Plane (two-dimensional), R2

Space (three-dimensional), R3

Space (higher-dimensional), Rd

A point in the plane, 3-dimensional space, higher-dimensional
space.
p = (px,py), p = (px,py,pz), p = (p1,p2, . . . ,pd)

A line in the plane: y = m · x+ c; representation by m and c

A half-plane in the plane: y≤ m · x+ c or y≥ m · x+ c

Represent vertical lines? Not by m and c . . .
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Geometry: line segments

A line segment pq is defined by its
two endpoints p and q:
(λ ·px +(1−λ ) ·qx,

λ ·py +(1−λ ) ·qy)
where 0≤ λ ≤ 1

Line segments are assumed to be
closed = with endpoints, not open

Two line segments intersect if they
have some point in common. It is a
proper intersection if it is exactly one
interior point of each line segment
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Polygons: simple or not

A polygon is a connected region of
the plane bounded by a sequence of
line segments

simple polygon

polygon with holes

convex polygon

non-simple polygon

The line segments of a polygon are
called its edges, the endpoints of
those edges are the vertices

Some abuse: polygon is only
boundary, or interior plus boundary

interior

exterior
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Other shapes: rectangles, circles, disks

A circle is only the boundary, a disk
is the boundary plus the interior

Rectangles, squares, quadrants,
slabs, half-lines, wedges, . . .
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Relations: distance, intersection, angle

The distance between two points is
generally the Euclidean distance:
√
(px−qx)2 +(py−qy)2

Another option: the Manhattan
distance:

|px−qx|+ |py−qy|

Question: What is the set of points
at equal Manhattan distance to some
point?

√
(px − qx)2 + (py − qy)2

|px − qx|

|py − qy|
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Relations: distance, intersection, angle

The distance between two geometric objects other than points
usually refers to the minimum distance between two points that
are part of these objects

Question: How can the distance between two line segments be
realized?
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Relations: distance, intersection, angle

The intersection of two geometric
objects is the set of points (part of
the plane, space) they have in
common

Question 1: How many intersection
points can a line and a circle have?

Question 2: What are the possible
outcomes of the intersection of a
rectangle and a quadrant?
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Relations: distance, intersection, angle

Question 3: What is the maximum
number of intersection points of a
line and a simple polygon with 10
vertices (trick question)?
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Relations: distance, intersection, angle

Question 4: What is the maximum
number of intersection points of a
line and a simple polygon boundary
with 10 vertices (still a trick
question)?
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Relations: distance, intersection, angle

Question 5: What is the maximum
number of edges of a simple polygon
boundary with 10 vertices that a line
can intersect?

Computational Geometry Lecture 1: Introduction and Convex Hulls



Description size

A point in the plane can be
represented using two reals

A line in the plane can be
represented using two reals and a
Boolean (for example)

A line segment can be represented by
two points, so four reals

A circle (or disk) requires three reals
to store it (center, radius)

A rectangle requires four reals to
store it

false, m, c

true, .., c

y = m · x+ c

x = c
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Description size

A simple polygon in the plane can be represented using 2n reals if
it has n vertices (and necessarily, n edges)

A set of n points requires 2n reals

A set of n line segments requires 4n reals

A point, line, circle, . . . requires O(1), or constant, storage.
A simple polygon with n vertices requires O(n), or linear, storage
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Computation time

Any computation (distance, intersection) on two objects of O(1)
description size takes O(1) time!

Question: Suppose that a simple polygon with n vertices is given;
the vertices are given in counterclockwise order along the
boundary. Give an efficient algorithm to determine all edges that
are intersected by a given line.

How efficient is your algorithm? Why is your algorithm efficient?
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Algorithms, efficiency

Recall from your algorithms and data structures course:

A set of n real numbers can be sorted in O(n logn) time

A set of n real numbers can be stored in a data structure that uses
O(n) storage and that allows searching, insertion, and deletion in
O(logn) time per operation

These are fundamental results in 1-dimensional computational
geometry!
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Computational geometry scope

In computational geometry, problems on input with more than
constant description size are the ones of interest

Computational geometry (theory): Study of geometric problems on
geometric data, and how efficient geometric algorithms that solve
them can be

Computational geometry (practice): Study of geometric problems
that arise in various applications and how geometric algorithms can
help to solve well-defined versions of such problems
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Computational geometry theory

Computational geometry (theory):
Classify abstract geometric problems
into classes depending on how
efficiently they can be solved

smallest enclosing circle

closest pair

any intersection?

find all intersections
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Computational geometry practice

Application areas that require geometric algorithms are computer
graphics, motion planning and robotics, geographic information
systems, CAD/CAM, statistics, physics simulations, databases,
games, multimedia retrieval, . . .

Computing shadows from virtual light sources

Spatial interpolation from groundwater pollution
measurements

Computing a collision-free path between obstacles

Computing similarity of two shapes for shape database
retrieval
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Computational geometry history

Early 70s: First attention for geometric problems from algorithms
researchers

1976: First PhD thesis in computational geometry (Michael
Shamos)

1985: First Annual ACM Symposium on Computational Geometry.
Also: first textbook

1996: CGAL: first serious implementation effort for robust
geometric algorithms

1997: First handbook on computational geometry (second one in
2000)
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Convexity

A shape or set is convex if for any
two points that are part of the
shape, the whole connecting line
segment is also part of the shape

Question: Which of the following
shapes are convex? Point, line
segment, line, circle, disk, quadrant?
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Convex hull

For any subset of the plane (set of
points, rectangle, simple polygon),
its convex hull is the smallest convex
set that contains that subset
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Convex hull problem

Give an algorithm that computes the
convex hull of any given set of n
points in the plane efficiently

The input has 2n coordinates, so
O(n) size

Question: Why can’t we expect to
do any better than O(n) time?
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Convex hull problem

Assume the n points are distinct

The output has at least 4 and at most 2n coordinates, so it has
size between O(1) and O(n)

The output is a convex polygon so it should be returned as a
sorted sequence of the points, clockwise (CW) along the boundary

Question: Is there any hope of finding an O(n) time algorithm?
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Developing an algorithm

To develop an algorithm, find useful
properties, make various
observations, draw many sketches to
gain insight

Property: The vertices of the convex
hull are always points from the input

Consequently, the edges of the
convex hull connect two points of
the input

Property: The supporting line of any
convex hull edge has all input points
to one side

p q

all points lie right of the
directed line from p to q,
if the edge from p to q is
a CW convex hull edge
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Developing an algorithm

To develop an algorithm, find useful
properties, make various
observations, draw many sketches to
gain insight

Property: The vertices of the convex
hull are always points from the input

Consequently, the edges of the
convex hull connect two points of
the input

Property: The supporting line of any
convex hull edge has all input points
to one side

p

q

all points lie right of the
directed line from p to q,
if the edge from p to q is
a CW convex hull edge
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Developing an algorithm

Algorithm SlowConvexHull(P)
Input. A set P of points in the plane.
Output. A list L containing the vertices of CH(P) in clockwise

order.
1. E← /0.
2. for all ordered pairs (p,q) ∈ P×P with p not equal to q
3. do valid← true
4. for all points r ∈ P not equal to p or q
5. do if r lies left of the directed line from p to q
6. then valid← false
7. if valid then Add the directed edge ~pq to E
8. From the set E of edges construct a list L of vertices of

CH(P), sorted in clockwise order.
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Developing an algorithm

Question: How must line 5 be interpreted to make the algorithm
correct?

Question: How efficient is the algorithm?
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Developing an algorithm

Another approach: incremental, from left to right

Let’s first compute the upper boundary of the convex hull this way
(property: on the upper hull, points appear in x-order)

Main idea: Sort the points from left to right (= by x-coordinate).
Then insert the points in this order, and maintain the upper hull so
far
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Developing an algorithm

Observation: from left to
right, there are only right turns
on the upper hull
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Developing an algorithm

Initialize by inserting the
leftmost two points

Computational Geometry Lecture 1: Introduction and Convex Hulls



Developing an algorithm

If we add the third point there
will be a right turn at the
previous point, so we add it
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Developing an algorithm

If we add the fourth point we
get a left turn at the third
point
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Developing an algorithm

. . . so we remove the third
point from the upper hull
when we add the fourth
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Developing an algorithm

If we add the fifth point we get
a left turn at the fourth point
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Developing an algorithm

. . . so we remove the fourth
point when we add the fifth
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Developing an algorithm

If we add the sixth point we
get a right turn at the fifth
point, so we just add it
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Developing an algorithm

We also just add the seventh
point
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Developing an algorithm

When adding the eight point
. . . we must remove the
seventh point
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Developing an algorithm

. . . we must remove the
seventh point
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Developing an algorithm

. . . and also the sixth point
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Developing an algorithm

. . . and also the fifth point
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Developing an algorithm

After two more steps we get:
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The pseudo-code

Algorithm ConvexHull(P)
Input. A set P of points in the plane.
Output. A list containing the vertices of CH(P) in clockwise order.
1. Sort the points by x-coordinate, resulting in a sequence

p1, . . . ,pn.
2. Put the points p1 and p2 in a list Lupper, with p1 as the first

point.
3. for i← 3 to n
4. do Append pi to Lupper.
5. while Lupper contains more than two points and the

last three points in Lupper do not
make a right turn

6. do Delete the middle of the last three points from
Lupper.

Computational Geometry Lecture 1: Introduction and Convex Hulls



The pseudo-code

Then we do the same for the
lower convex hull, from right
to left

We remove the first and last
points of the lower convex hull

. . . and concatenate the two
lists into one

p1, p2, p10, p13, p14

p14, p12, p8, p4, p1
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Algorithm analysis

Algorithm analysis generally has two components:

proof of correctness

efficiency analysis, proof of running time
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Correctness

Are the general observations on which the algorithm is based
correct?

Does the algorithm handle degenerate cases correctly?

Here:

Does the sorted order matter if two or more points have the
same x-coordinate?

What happens if there are three or more collinear points, in
particular on the convex hull?
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Efficiency

Identify of each line of pseudo-code how much time it takes, if it is
executed once (note: operations on a constant number of
constant-size objects take constant time)

Consider the loop-structure and examine how often each line of
pseudo-code is executed

Sometimes there are global arguments why an algorithm is more
efficient than it seems, at first
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The pseudo-code

Algorithm ConvexHull(P)
Input. A set P of points in the plane.
Output. A list containing the vertices of CH(P) in clockwise order.
1. Sort the points by x-coordinate, resulting in a sequence

p1, . . . ,pn.
2. Put the points p1 and p2 in a list Lupper, with p1 as the first

point.
3. for i← 3 to n
4. do Append pi to Lupper.
5. while Lupper contains more than two points and the

last three points in Lupper do not
make a right turn

6. do Delete the middle of the last three points from
Lupper.
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Efficiency

The sorting step takes O(n logn) time

Adding a point takes O(1) time for the adding-part. Removing
points takes constant time for each removed point. If due to an
addition, k points are removed, the step takes O(1+ k) time

Total time:

O(n logn)+
n

∑
i=3

O(1+ ki)

if ki points are removed when adding pi

Since ki = O(n), we get

O(n logn)+
n

∑
i=3

O(n) = O(n2)
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Efficiency

Global argument: each point can be removed only once from the
upper hull

This gives us the fact:

n

∑
i=3

ki ≤ n

Hence,

O(n logn)+
n

∑
i=3

O(1+ ki) = O(n logn)+O(n) = O(n logn)
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Final result

The convex hull of a set of n points in the plane can be computed
in O(n logn) time, and this is optimal
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Other approaches: divide-and-conquer

Divide-and-conquer: split the
point set in two halves, compute
the convex hulls recursively, and
merge

A merge involves finding “extreme
vertices” in every direction

Computational Geometry Lecture 1: Introduction and Convex Hulls



Other approaches: divide-and-conquer

Alternatively: split the point set
in two halves on x-coordinate,
compute the convex hulls
recursively, and merge

A merge now comes down to
finding two common tangent lines
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Convex hulls in 3D

For a 3-dimensional point set, the
convex hull is a convex
polyhedron

It has vertices (0-dim.), edges
(1-dim.), and facets (2-dim.) in
its boundary, and a 3-dimensional
interior

The boundary is a planar graph,
so it has O(n) vertices, edges and
facets
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Convex hulls in 4D

For a 4-dimensional point set, the convex hull is a convex
polyhedron

It has vertices (0-dim.), edges (1-dim.), 2-facets (2-dim.), and
3-facets (3-dim.) in its boundary, and a 4-dimensional interior

Its boundary can have Θ(n2) facets in the worst case!
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