
Computational Geometry

Lecture 1: Introduction and convex hulls

Computational Geometry Lecture 1: Introduction and Convex Hulls

Geometry: points, lines, ...

Plane (two-dimensional), R2

Space (three-dimensional), R3

Space (higher-dimensional), Rd

A point in the plane, 3-dimensional space, higher-dimensional
space.
p = (px,py), p = (px,py,pz), p = (p1,p2, . . . ,pd)

A line in the plane: y = m · x+ c; representation by m and c

A half-plane in the plane: y≤ m · x+ c or y≥ m · x+ c

Represent vertical lines? Not by m and c . . .

Computational Geometry Lecture 1: Introduction and Convex Hulls

Geometry: line segments

A line segment pq is defined by its
two endpoints p and q:
(λ ·px +(1−λ) ·qx,

λ ·py +(1−λ) ·qy)
where 0≤ λ ≤ 1

Line segments are assumed to be
closed = with endpoints, not open

Two line segments intersect if they
have some point in common. It is a
proper intersection if it is exactly one
interior point of each line segment

Computational Geometry Lecture 1: Introduction and Convex Hulls

Polygons: simple or not

A polygon is a connected region of
the plane bounded by a sequence of
line segments

simple polygon

polygon with holes

convex polygon

non-simple polygon

The line segments of a polygon are
called its edges, the endpoints of
those edges are the vertices

Some abuse: polygon is only
boundary, or interior plus boundary

interior

exterior

Computational Geometry Lecture 1: Introduction and Convex Hulls

Other shapes: rectangles, circles, disks

A circle is only the boundary, a disk
is the boundary plus the interior

Rectangles, squares, quadrants,
slabs, half-lines, wedges, . . .

Computational Geometry Lecture 1: Introduction and Convex Hulls

Relations: distance, intersection, angle

The distance between two points is
generally the Euclidean distance:
√
(px−qx)2 +(py−qy)2

Another option: the Manhattan
distance:

|px−qx|+ |py−qy|

Question: What is the set of points
at equal Manhattan distance to some
point?

√
(px − qx)2 + (py − qy)2

|px − qx|

|py − qy|

Computational Geometry Lecture 1: Introduction and Convex Hulls

Relations: distance, intersection, angle

The distance between two geometric objects other than points
usually refers to the minimum distance between two points that
are part of these objects

Question: How can the distance between two line segments be
realized?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Relations: distance, intersection, angle

The intersection of two geometric
objects is the set of points (part of
the plane, space) they have in
common

Question 1: How many intersection
points can a line and a circle have?

Question 2: What are the possible
outcomes of the intersection of a
rectangle and a quadrant?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Relations: distance, intersection, angle

Question 3: What is the maximum
number of intersection points of a
line and a simple polygon with 10
vertices (trick question)?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Relations: distance, intersection, angle

Question 4: What is the maximum
number of intersection points of a
line and a simple polygon boundary
with 10 vertices (still a trick
question)?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Relations: distance, intersection, angle

Question 5: What is the maximum
number of edges of a simple polygon
boundary with 10 vertices that a line
can intersect?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Description size

A point in the plane can be
represented using two reals

A line in the plane can be
represented using two reals and a
Boolean (for example)

A line segment can be represented by
two points, so four reals

A circle (or disk) requires three reals
to store it (center, radius)

A rectangle requires four reals to
store it

false, m, c

true, .., c

y = m · x+ c

x = c

Computational Geometry Lecture 1: Introduction and Convex Hulls

Description size

A simple polygon in the plane can be represented using 2n reals if
it has n vertices (and necessarily, n edges)

A set of n points requires 2n reals

A set of n line segments requires 4n reals

A point, line, circle, . . . requires O(1), or constant, storage.
A simple polygon with n vertices requires O(n), or linear, storage

Computational Geometry Lecture 1: Introduction and Convex Hulls

Computation time

Any computation (distance, intersection) on two objects of O(1)
description size takes O(1) time!

Question: Suppose that a simple polygon with n vertices is given;
the vertices are given in counterclockwise order along the
boundary. Give an efficient algorithm to determine all edges that
are intersected by a given line.

How efficient is your algorithm? Why is your algorithm efficient?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Algorithms, efficiency

Recall from your algorithms and data structures course:

A set of n real numbers can be sorted in O(n logn) time

A set of n real numbers can be stored in a data structure that uses
O(n) storage and that allows searching, insertion, and deletion in
O(logn) time per operation

These are fundamental results in 1-dimensional computational
geometry!

Computational Geometry Lecture 1: Introduction and Convex Hulls

Computational geometry scope

In computational geometry, problems on input with more than
constant description size are the ones of interest

Computational geometry (theory): Study of geometric problems on
geometric data, and how efficient geometric algorithms that solve
them can be

Computational geometry (practice): Study of geometric problems
that arise in various applications and how geometric algorithms can
help to solve well-defined versions of such problems

Computational Geometry Lecture 1: Introduction and Convex Hulls

Computational geometry theory

Computational geometry (theory):
Classify abstract geometric problems
into classes depending on how
efficiently they can be solved

smallest enclosing circle

closest pair

any intersection?

find all intersections

Computational Geometry Lecture 1: Introduction and Convex Hulls

Computational geometry practice

Application areas that require geometric algorithms are computer
graphics, motion planning and robotics, geographic information
systems, CAD/CAM, statistics, physics simulations, databases,
games, multimedia retrieval, . . .

Computing shadows from virtual light sources

Spatial interpolation from groundwater pollution
measurements

Computing a collision-free path between obstacles

Computing similarity of two shapes for shape database
retrieval

Computational Geometry Lecture 1: Introduction and Convex Hulls

Computational geometry history

Early 70s: First attention for geometric problems from algorithms
researchers

1976: First PhD thesis in computational geometry (Michael
Shamos)

1985: First Annual ACM Symposium on Computational Geometry.
Also: first textbook

1996: CGAL: first serious implementation effort for robust
geometric algorithms

1997: First handbook on computational geometry (second one in
2000)

Computational Geometry Lecture 1: Introduction and Convex Hulls

Convexity

A shape or set is convex if for any
two points that are part of the
shape, the whole connecting line
segment is also part of the shape

Question: Which of the following
shapes are convex? Point, line
segment, line, circle, disk, quadrant?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Convex hull

For any subset of the plane (set of
points, rectangle, simple polygon),
its convex hull is the smallest convex
set that contains that subset

Computational Geometry Lecture 1: Introduction and Convex Hulls

Convex hull problem

Give an algorithm that computes the
convex hull of any given set of n
points in the plane efficiently

The input has 2n coordinates, so
O(n) size

Question: Why can’t we expect to
do any better than O(n) time?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Convex hull problem

Assume the n points are distinct

The output has at least 4 and at most 2n coordinates, so it has
size between O(1) and O(n)

The output is a convex polygon so it should be returned as a
sorted sequence of the points, clockwise (CW) along the boundary

Question: Is there any hope of finding an O(n) time algorithm?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

To develop an algorithm, find useful
properties, make various
observations, draw many sketches to
gain insight

Property: The vertices of the convex
hull are always points from the input

Consequently, the edges of the
convex hull connect two points of
the input

Property: The supporting line of any
convex hull edge has all input points
to one side

p q

all points lie right of the
directed line from p to q,
if the edge from p to q is
a CW convex hull edge

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

To develop an algorithm, find useful
properties, make various
observations, draw many sketches to
gain insight

Property: The vertices of the convex
hull are always points from the input

Consequently, the edges of the
convex hull connect two points of
the input

Property: The supporting line of any
convex hull edge has all input points
to one side

p

q

all points lie right of the
directed line from p to q,
if the edge from p to q is
a CW convex hull edge

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

Algorithm SlowConvexHull(P)
Input. A set P of points in the plane.
Output. A list L containing the vertices of CH(P) in clockwise

order.
1. E← /0.
2. for all ordered pairs (p,q) ∈ P×P with p not equal to q
3. do valid← true
4. for all points r ∈ P not equal to p or q
5. do if r lies left of the directed line from p to q
6. then valid← false
7. if valid then Add the directed edge ~pq to E
8. From the set E of edges construct a list L of vertices of

CH(P), sorted in clockwise order.

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

Question: How must line 5 be interpreted to make the algorithm
correct?

Question: How efficient is the algorithm?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

Another approach: incremental, from left to right

Let’s first compute the upper boundary of the convex hull this way
(property: on the upper hull, points appear in x-order)

Main idea: Sort the points from left to right (= by x-coordinate).
Then insert the points in this order, and maintain the upper hull so
far

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

Observation: from left to
right, there are only right turns
on the upper hull

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

Initialize by inserting the
leftmost two points

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

If we add the third point there
will be a right turn at the
previous point, so we add it

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

If we add the fourth point we
get a left turn at the third
point

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

. . . so we remove the third
point from the upper hull
when we add the fourth

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

If we add the fifth point we get
a left turn at the fourth point

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

. . . so we remove the fourth
point when we add the fifth

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

If we add the sixth point we
get a right turn at the fifth
point, so we just add it

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

We also just add the seventh
point

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

When adding the eight point
. . . we must remove the
seventh point

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

. . . we must remove the
seventh point

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

. . . and also the sixth point

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

. . . and also the fifth point

Computational Geometry Lecture 1: Introduction and Convex Hulls

Developing an algorithm

After two more steps we get:

Computational Geometry Lecture 1: Introduction and Convex Hulls

The pseudo-code

Algorithm ConvexHull(P)
Input. A set P of points in the plane.
Output. A list containing the vertices of CH(P) in clockwise order.
1. Sort the points by x-coordinate, resulting in a sequence

p1, . . . ,pn.
2. Put the points p1 and p2 in a list Lupper, with p1 as the first

point.
3. for i← 3 to n
4. do Append pi to Lupper.
5. while Lupper contains more than two points and the

last three points in Lupper do not
make a right turn

6. do Delete the middle of the last three points from
Lupper.

Computational Geometry Lecture 1: Introduction and Convex Hulls

The pseudo-code

Then we do the same for the
lower convex hull, from right
to left

We remove the first and last
points of the lower convex hull

. . . and concatenate the two
lists into one

p1, p2, p10, p13, p14

p14, p12, p8, p4, p1

Computational Geometry Lecture 1: Introduction and Convex Hulls

Algorithm analysis

Algorithm analysis generally has two components:

proof of correctness

efficiency analysis, proof of running time

Computational Geometry Lecture 1: Introduction and Convex Hulls

Correctness

Are the general observations on which the algorithm is based
correct?

Does the algorithm handle degenerate cases correctly?

Here:

Does the sorted order matter if two or more points have the
same x-coordinate?

What happens if there are three or more collinear points, in
particular on the convex hull?

Computational Geometry Lecture 1: Introduction and Convex Hulls

Efficiency

Identify of each line of pseudo-code how much time it takes, if it is
executed once (note: operations on a constant number of
constant-size objects take constant time)

Consider the loop-structure and examine how often each line of
pseudo-code is executed

Sometimes there are global arguments why an algorithm is more
efficient than it seems, at first

Computational Geometry Lecture 1: Introduction and Convex Hulls

The pseudo-code

Algorithm ConvexHull(P)
Input. A set P of points in the plane.
Output. A list containing the vertices of CH(P) in clockwise order.
1. Sort the points by x-coordinate, resulting in a sequence

p1, . . . ,pn.
2. Put the points p1 and p2 in a list Lupper, with p1 as the first

point.
3. for i← 3 to n
4. do Append pi to Lupper.
5. while Lupper contains more than two points and the

last three points in Lupper do not
make a right turn

6. do Delete the middle of the last three points from
Lupper.

Computational Geometry Lecture 1: Introduction and Convex Hulls

Efficiency

The sorting step takes O(n logn) time

Adding a point takes O(1) time for the adding-part. Removing
points takes constant time for each removed point. If due to an
addition, k points are removed, the step takes O(1+ k) time

Total time:

O(n logn)+
n

∑
i=3

O(1+ ki)

if ki points are removed when adding pi

Since ki = O(n), we get

O(n logn)+
n

∑
i=3

O(n) = O(n2)

Computational Geometry Lecture 1: Introduction and Convex Hulls

Efficiency

Global argument: each point can be removed only once from the
upper hull

This gives us the fact:

n

∑
i=3

ki ≤ n

Hence,

O(n logn)+
n

∑
i=3

O(1+ ki) = O(n logn)+O(n) = O(n logn)

Computational Geometry Lecture 1: Introduction and Convex Hulls

Final result

The convex hull of a set of n points in the plane can be computed
in O(n logn) time, and this is optimal

Computational Geometry Lecture 1: Introduction and Convex Hulls

Other approaches: divide-and-conquer

Divide-and-conquer: split the
point set in two halves, compute
the convex hulls recursively, and
merge

A merge involves finding “extreme
vertices” in every direction

Computational Geometry Lecture 1: Introduction and Convex Hulls

Other approaches: divide-and-conquer

Alternatively: split the point set
in two halves on x-coordinate,
compute the convex hulls
recursively, and merge

A merge now comes down to
finding two common tangent lines

Computational Geometry Lecture 1: Introduction and Convex Hulls

Convex hulls in 3D

For a 3-dimensional point set, the
convex hull is a convex
polyhedron

It has vertices (0-dim.), edges
(1-dim.), and facets (2-dim.) in
its boundary, and a 3-dimensional
interior

The boundary is a planar graph,
so it has O(n) vertices, edges and
facets

Computational Geometry Lecture 1: Introduction and Convex Hulls

Convex hulls in 4D

For a 4-dimensional point set, the convex hull is a convex
polyhedron

It has vertices (0-dim.), edges (1-dim.), 2-facets (2-dim.), and
3-facets (3-dim.) in its boundary, and a 4-dimensional interior

Its boundary can have Θ(n2) facets in the worst case!

Computational Geometry Lecture 1: Introduction and Convex Hulls

	Introduction
	Geometric objects
	Geometric relations
	Combinatorial complexity
	Computational geometry

	Convex hulls
	Convexity
	Convex hull
	Algorithm development
	Algorithm analysis

	More on convex hulls

