Matrix inversion of a 3×3 matrix

The adjoint and inverse of a matrix

In this leaflet we consider how to find the inverse of a 3×3 matrix. Before you work through this leaflet, you will need to know how to find the determinant and cofactors of a 3×3 matrix. If necessary you should refer to previous leaflets in this series which cover these topics.
Here is the matrix A that we saw in the leaflet on finding cofactors and determinants. Alongside, we have assembled the matrix of cofactors of A.

$$
A=\left(\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right) \quad C=\left(\begin{array}{ccc}
-2 & 3 & 9 \\
8 & -11 & -34 \\
-5 & 7 & 21
\end{array}\right)
$$

In order to find the inverse of A, we first need to use the matrix of cofactors, C, to create the adjoint of matrix A. The adjoint of A, denoted $\operatorname{adj}(A)$, is the transpose of the matrix of cofactors:

$$
\operatorname{adj}(A)=C^{T}
$$

Remember that to find the transpose, the rows and columns are interchanged, so that

$$
\operatorname{adj}(A)=C^{T}=\left(\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right)
$$

Then the formula for the inverse matrix is

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

where $\operatorname{det}(A)$ is the determinant of A.

Given a matrix A, its inverse is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

where $\operatorname{det}(A)$ is the determinant of $A, \operatorname{and} \operatorname{adj}(A)$ is the adjoint of A.
The inverse has the special property that

$$
A A^{-1}=A^{-1} A=I \quad(\text { an identity matrix })
$$

Example

Find the inverse of $A=\left(\begin{array}{ccc}7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2\end{array}\right)$.

Solution

We already have that $\operatorname{adj}(A)=\left(\begin{array}{ccc}-2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21\end{array}\right)$.
In an earlier leaflet, the determinant of this matrix A was found to be 1 . So

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{1}\left(\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right)
$$

You should verify this is correct by showing that $A A^{-1}=A^{-1} A=I$, the 3×3 identity matrix.

Solving a set of simultaneous equations

We now show how the inverse is used to solve the simultaneous equations:

$$
\begin{aligned}
7 x+2 y+z & =21 \\
3 y-z & =5 \\
-3 x+4 y-2 z & =-1
\end{aligned}
$$

In matrix form these equations can be written

$$
\left(\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
x
\end{array}\right)=\left(\begin{array}{c}
21 \\
5 \\
-1
\end{array}\right)
$$

Recall that when $A X=B$, then $X=A^{-1} B$ so

$$
\left(\begin{array}{l}
x \\
y \\
x
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right)\left(\begin{array}{c}
21 \\
5 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-42+40+5 \\
63-55-7 \\
189-170-21
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)
$$

So $x=3, y=1$ and $z=-2$.
These values should be checked by substituting them back into the original equations.

Finally, note that if the determinant of the coefficient matrix A is zero, then it will be impossible to find the inverse of A, and this method will not be applicable.

Note that a video tutorial covering the content of this leaflet is available from sigma.

