THE INVERSE OF A SQUARE MATRIX

What You Should Learn

- Verify that two matrices are inverses of each other.
- Use Gauss-Jordan elimination to find the inverses of matrices.
- Use a formula to find the inverses of 2×2 matrices.
- Use inverse matrices to solve systems of linear equations.

The Inverse of a Matrix

The Inverse of a Matrix

Solve $a x=b$.
To solve this equation for x, multiply each side of the equation by a^{-1} (provided that $a \neq 0$).

$$
\begin{aligned}
a x & =b \\
\left(a^{-1} a\right) x & =a^{-1} b \\
(1) x & =a^{-1} b \\
x & =a^{-1} b
\end{aligned}
$$

The number a^{-1} is called the multiplicative inverse of a because $a^{-1} a=1$.

©The Inverse of a Matrix

Definition of the Inverse of a Square Matrix

Let A be an $n \times n$ matrix and let I_{n} be the $n \times n$ identity matrix. If there exists a matrix A^{-1} such that

$$
A A^{-1}=I_{n}=A^{-1} A
$$

then A^{-1} is called the inverse of A. The symbol A^{-1} is read " A inverse."

Example 1 - The Inverse of a Matrix

Show that B is the inverse of A, where

$$
A=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]
$$

Solution:

To show that B is the inverse of A, show that $A B=I=B A$, as follows.

$$
\begin{aligned}
A B=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right] & =\left[\begin{array}{ll}
-1+2 & 2-2 \\
-1+1 & 2-1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
B A & =\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{lr}
-1+2 & 2-2 \\
-1+1 & 2-1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

As you can see, $A B=I=B A$.

Finding Inverse Matrices

Finding Inverse Matrices

If a matrix A has an inverse, A is called invertible (or nonsingular);
otherwise,
A is called singular.
A nonsquare matrix cannot have an inverse.

IFxample 2 - Finding the Inverse of a Matrix

Find the inverse of $A=\left[\begin{array}{rr}1 & 4 \\ -1 & -3\end{array}\right]$.

Solution:

To find the inverse of A, try to solve the matrix equation $A X=I$ for x.

$$
\begin{aligned}
& \text { A } X \quad \text { I } \\
& {\left[\begin{array}{rr}
1 & 4 \\
-1 & -3
\end{array}\right]\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rr}
x_{11}+4 x_{21} & x_{12}+4 x_{22} \\
-x_{11}-3 x_{21} & -x_{12}-3 x_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{aligned}
$$

Fxample 2 - Solution

$$
\begin{aligned}
& \left\{\begin{aligned}
x_{11}+4 x_{21}=1 & \text { Linear system with two variables, } \\
-x_{11}-3 x_{21}=0 & \text { and } x_{21}
\end{aligned}\right. \\
& \left\{\begin{aligned}
x_{12}+4 x_{22}=0 & \text { Linear system with two variables, } \\
-x_{12}-3 x_{22}=1 & x_{12} \text { and } x_{22}
\end{aligned}\right.
\end{aligned}
$$

Solve the first system using elementary row operations to determine that $x_{11}=-3$ and $x_{21}=1$.

From the second system you can determine that $x_{12}=-4$ and $x_{22}=1$.

Therefore, the inverse of A is

$$
X=A^{-1}=\left[\begin{array}{rr}
-3 & -4 \\
1 & 1
\end{array}\right] .
$$

Check:

$$
\begin{gathered}
A A^{-1}=\left[\begin{array}{rr}
1 & 4 \\
-1 & -3
\end{array}\right]\left[\begin{array}{rr}
-3 & -4 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
A^{-1} A=\left[\begin{array}{rr}
-3 & -4 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 4 \\
-1 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Finding Inverse Matrices

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 4 & \vdots & 1 \\
-1 & -3 & \vdots & 0
\end{array}\right]} \\
& \text { and } \\
& {\left[\begin{array}{rrrr}
1 & 4 & \vdots & 0 \\
-1 & -3 & \vdots & 1
\end{array}\right]}
\end{aligned}
$$

Finding Inverse Matrices

Separately, you can solve them simultaneously by adjoining the identity matrix to the coefficient matrix to obtain

$$
\begin{gathered}
A \\
\\
{\left[\begin{array}{rrccc}
1 & 4 & \vdots & 1 & 0 \\
-1 & -3 & \vdots & 0 & 1
\end{array}\right] .}
\end{gathered}
$$

This "doubly augmented" matrix can be represented as [$A \vdots$! $]$.

MFinding Inverse Matrices

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 4 & \vdots & 1 & 0 \\
-1 & -3 & \vdots & 0 & 1
\end{array}\right]} \\
& R_{1}+R_{2} \rightarrow\left[\begin{array}{ccccc}
1 & 4 & \vdots & 1 & 0 \\
0 & 1 & \vdots & 1 & 1
\end{array}\right] \\
& -4 R_{2}+R_{1} \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & \vdots & -3 & -4 \\
0 & 1 & \vdots & 1 & 1
\end{array}\right] \\
& \text { A } \\
& {\left[\begin{array}{rrrrr}
1 & 4 & \vdots & 1 & 0 \\
-1 & -3 & \vdots & 0 & 1
\end{array}\right] \square\left[\begin{array}{lllrr}
1 & 0 & \vdots & -3 & -4 \\
0 & 1 & \vdots & 1 & 1
\end{array}\right]}
\end{aligned}
$$

Finding Inverse Matrices

Finding an Inverse Matrix

Let A be a square matrix of order n.

1. Write the $n \times 2 n$ matrix that consists of the given matrix A on the left and the $n \times n$ identity matrix I on the right to obtain $\left[\begin{array}{ll}A & \vdots\end{array}\right]$.
2. If possible, row reduce A to I using elementary row operations on the entire matrix $\left[\begin{array}{lll}A & \vdots\end{array}\right]$. The result will be the matrix $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$. If this is not possible, A is not invertible.
3. Check your work by multiplying to see that $A A^{-1}=I=A^{-1} A$.

The Inverse of a 2×2 Matrix

The Inverse of a 2×2 Matrix

This simple formula, which works only for 2×2 matrices, is explained as follows. If A is a 2×2 matrix given by

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then A is invertible if and only if $a d-b c \neq 0$. Moreover, if $a d-b c \neq 0$, the inverse is given by

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] . \quad \text { Formula for inverse of matrix } A
$$

The denominator $a d-b c$ is called the determinant of the 2×2 matrix A.

If possible, find the inverse of each matrix.
a. $A=\left[\begin{array}{rr}3 & -1 \\ -2 & 2\end{array}\right]$

$$
\text { b. } B=\left[\begin{array}{rr}
3 & -1 \\
-6 & 2
\end{array}\right]
$$

Solution:
a. For the matrix A, apply the formula for the inverse of a 2×2 matrix to obtain

$$
\begin{aligned}
a d-b c & =(3)(2)-(-1)(-2) \\
& =4 .
\end{aligned}
$$

Example 4 - Solution

$$
\begin{aligned}
A^{-1} & =\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{4} \\
\text { Substitute for } a, b, c, d, \text { and the } \\
\text { determinant. }
\end{array}\right. \\
& =
\end{aligned}
$$

b. For the matrix B, you have

$$
\begin{aligned}
a d-b c & =(3)(2)-(-1)(-6) \\
& =0
\end{aligned}
$$

which means that B is not invertible.

Systems of Linear Equations

Systems of Linear Equations

A System of Equations with a Unique Solution

If A is an invertible matrix, the system of linear equations represented by
$A X=B$ has a unique solution given by
$X=A^{-1} B$.

You are going to invest $\$ 10,000$ in AAA-rated bonds, AA-rated bonds, and B-rated bonds and want an annual return of $\$ 730$. The average yields are 6% on AAA bonds, 7.5% on AA bonds, and 9.5% on B bonds. You will invest twice as much in AAA bonds as in B bonds. Your investment can be represented as

$$
\left\{\begin{aligned}
x+y+z & =10,000 \\
0.06 x+0.075 y+0.095 z & =730 \\
x-2 z & =0
\end{aligned}\right.
$$

where x, y, and z represent the amounts invested in AAA, $A A$, and B bonds, respectively. Use an inverse matrix to solve the system.

xample 5 - Solution

Begin by writing the system in the matrix form $A X=B$.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0.06 & 0.075 & 0.095 \\
1 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
10,000 \\
730 \\
0
\end{array}\right]
$$

Then, use Gauss-Jordan elimination to find A^{-1}.

$$
A^{-1}=\left[\begin{array}{crc}
15 & -200 & -2 \\
-21.5 & 300 & 3.5 \\
7.5 & -100 & -1.5
\end{array}\right]
$$

Example 5 - Solution

Finally, multiply B by A^{-1} on the left to obtain the solution.

$$
\begin{aligned}
X=A^{-1} B & =\left[\begin{array}{rrr}
15 & -200 & -2 \\
-21.5 & 300 & 3.5 \\
7.5 & -100 & -1.5
\end{array}\right]\left[\begin{array}{r}
10,000 \\
730 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
4000 \\
4000 \\
2000
\end{array}\right]
\end{aligned}
$$

The solution of the system is $x=4000, y=4000$, and $z=2000$. So, you will invest $\$ 4000$ in AAA bonds, $\$ 4000$ in AA bonds, and $\$ 2000$ in B bonds.

