Linear Programming: Chapter 5 Duality

Robert J. Vanderbei

October 17, 2007

Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/~rvdb

Resource Allocation

Recall the resource allocation problem (m = 2, n = 3):

where

 c_j = profit per unit of product j produced b_i = units of raw material i on hand a_{ij} = units raw material i required to produce 1 unit of prod j.

Closing Up Shop

If we produce one unit less of product j, then we free up:

- a_{1i} units of raw material 1 and
- a_{2j} units of raw material 2.

Selling these unused raw materials for y_1 and y_2 dollars/unit yields $a_{1j}y_1 + a_{2j}y_2$ dollars.

Only interested if this exceeds lost profit on each product j:

$$a_{1j}y_1 + a_{2j}y_2 \ge c_j, \qquad j = 1, 2, 3.$$

Consider a buyer offering to purchase our entire inventory. Subject to above constraints, buyer wants to minimize cost:

minimize
$$b_1y_1 + b_2y_2$$
 subject to $a_{11}y_1 + a_{21}y_2 \ge c_1$ $a_{12}y_1 + a_{22}y_2 \ge c_2$ $a_{13}y_1 + a_{23}y_2 \ge c_3$ $y_1, y_2 \ge 0$.

Duality

Every Problem:

maximize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i$ $i=1,2,\ldots,m$ $x_j \geq 0$ $j=1,2,\ldots,n,$

Has a Dual:

minimize
$$\sum_{i=1}^m b_i y_i$$
 subject to $\sum_{i=1}^m y_i a_{ij} \geq c_j$ $j=1,2,\ldots,n$ $y_i \geq 0$ $i=1,2,\ldots,m.$

Dual of Dual

Primal Problem:

maximize
$$\sum_{j=1}^n c_j x_j$$
 problem.

Subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i$ $i=1,\ldots,m$ A problem is defined by its data (notation $x_j \geq 0$ $j=1,\ldots,n,$ used for the variables

Original problem is called the *primal* problem.

A problem is defined is arbitrary).

Dual in "Standard" Form:

-maximize
$$\sum_{i=1}^m -b_i y_i$$
 subject to
$$\sum_{i=1}^m -a_{ij} y_i \leq -c_j \quad j=1,\dots,n$$

$$y_i \geq 0 \qquad i=1,\dots,m.$$

Dual is "negative transpose" of primal.

Theorem Dual of dual is primal.

Weak Duality Theorem

If $(x_1, x_2, ..., x_n)$ is feasible for the primal and $(y_1, y_2, ..., y_m)$ is feasible for the dual, then

$$\sum_{i} c_j x_j \le \sum_{i} b_i y_i.$$

Proof.

$$\sum_{j} c_{j} x_{j} \leq \sum_{j} \left(\sum_{i} y_{i} a_{ij} \right) x_{j}$$

$$= \sum_{ij} y_{i} a_{ij} x_{j}$$

$$= \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\leq \sum_{i} b_{i} y_{i}.$$

Gap or No Gap?

An important question:

Is there a gap between the largest primal value and the smallest dual value?

Answer is provided by the Strong Duality Theorem (coming later).

Simplex Method and Duality

A Primal Problem:

Its Dual:

Notes:

- Dual is negative transpose of primal.
- Primal is feasible, dual is not.

Use primal to choose pivot: x_2 enters, w_2 leaves. Make analogous pivot in dual: z_2 leaves, y_2 enters.

Second Iteration

After First Pivot:

Primal (feasible):

Dual (still not feasible):

Note: negative transpose property intact.

Again, use primal to pick pivot: x_3 enters, w_1 leaves.

Make analogous pivot in dual: z_3 leaves, y_1 enters.

After Second Iteration

Primal:

• Is optimal.

Dual:

- Negative transpose property remains intact.
- Is optimal.

Conclusion

Simplex method applied to primal problem (two phases, if necessary), solves both the primal and the dual.

Strong Duality Theorem

Conclusion on previous slide is the essence of the *strong duality theorem* which we now state:

Theorem. If the primal problem has an optimal solution,

$$x^* = (x_1^*, x_2^*, \dots, x_n^*),$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, y_2^*, \dots, y_m^*),$$

and

$$\sum_{i} c_j x_j^* = \sum_{i} b_i y_i^*.$$

Paraphrase:

If primal has an optimal solution, then there is no duality gap.

Duality Gap

Four possibilities:

- Primal optimal, dual optimal (no gap).
- Primal unbounded, dual infeasible (no gap).
- Primal infeasible, dual unbounded (no gap).
- Primal infeasible, dual infeasible (infinite gap).

Example of *infinite gap*:

Complementary Slackness

Theorem. At optimality, we have

$$x_j z_j = 0,$$
 for $j = 1, 2, ..., n,$
 $w_i y_i = 0,$ for $i = 1, 2, ..., m.$

Proof

Recall the proof of the Weak Duality Theorem:

$$\sum_{j} c_j x_j \leq \sum_{j} (c_j + z_j) x_j = \sum_{j} \left(\sum_{i} y_i a_{ij} \right) x_j = \sum_{ij} y_i a_{ij} x_j$$
$$= \sum_{i} \left(\sum_{j} a_{ij} x_j \right) y_i = \sum_{i} (b_i - w_i) y_i \leq \sum_{i} b_i y_i,$$

The inequalities come from the fact that

$$x_j z_j \ge 0$$
, for all j , $w_i y_i \ge 0$, for all i .

By Strong Duality Theorem, the inequalities are equalities at optimality.

Dual Simplex Method

When: dual feasible, primal infeasible (i.e., pinks on the left, not on top).

An Example. Showing both primal and dual dictionaries:

obj =	0	.0	+	3.0	y1 +	5.0	y2 +	-8.0	у3
z1 =	2	.0	- [1.0	y1 -	-2.0	y2 -	-2.0	у3
z2 =	4	.0	- [-2.0	y1 -	3.0	y2 -	-3.0	у3
z 3 =	0	.0	- [0.0	y1 -	0.0	y2 -	-3.0	у3
z4 =	6	.0	- [1.0	y1 -	2.0	y2 -	-2.0	у3

Looking at dual dictionary: y_2 enters, z_2 leaves.

On the primal dictionary: w_2 leaves, x_2 enters.

After pivot...

Dual Simplex Method: Second Pivot

Going in, we have:

Looking at dual: y_1 enters, z_4 leaves.

Looking at primal: w_1 leaves, x_4 enters.

Dual Simplex Method Pivot Rule

Refering to the primal dictionary:

- Pick leaving variable from those rows that are infeasible.
- Pick entering variable from a box with a negative value and which can be increased the least (on the dual side).

Next primal dictionary shown on next page...

Dual Simplex Method: Third Pivot

Going in, we have:

Which variable must leave and which must enter?

See next page...

Dual Simplex Method: Third Pivot—Answer

Answer is: x_2 leaves, x_1 enters.

Resulting dictionary is OPTIMAL:

Dual-Based Phase I Method

Notes:

- Two objective functions: the true objective (on top), and a fake one (below it).
- For *Phase I*, use the fake objective—it's dual feasible.
- Two right-hand sides: the real one (on the left) and a fake (on the right).
- Ignore the fake right-hand side—we'll use it in another algorithm later.

Phase I—First Pivot: w_3 leaves, x_1 enters. After first pivot...

Dual-Based Phase I Method—Second Pivot

Recall current dictionary:

Dual pivot: w_2 leaves, x_2 enters.

After pivot:

Dual-Based Phase I Method—Third Pivot

Current dictionary:

Dual pivot: w_1 leaves, w_2 enters.

After pivot:

lt's feasible!

Fourth Pivot—Phase II

Current dictionary:

It's feasible.

Ignore fake objective.

Use the real thing (top row).

Primal pivot: x_3 enters, w_4 leaves.

Final Dictionary

After pivot:

Problem is unbounded!