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Ford-Fulkerson Algorithm for
Maximum Flow Problem

Given a graph which represents a flow network where every edge has a capacity. Also given two
vertices source ‘s’ and sink ‘t’ in the graph, find the maximum possible flow from s to t with following
constraints:

a) Flow on an edge doesn’t exceed the given capacity of the edge.
b) Incoming flow is equal to outgoing flow for every vertex except s and t.

For example, consider the following graph from CLRS book.

Source: 0

Maximum Flow
in the above
graph is 23

19

Ford-Fulkerson Algorithm

The following is simple idea of Ford-Fulkerson algorithm:

1) Start with initial flow as @.

2) While there is a augmenting path from source to sink.
Add this path-flow to flow.

3) Return flow.

Time Complexity: Time complexity of the above algorithm is O(max_flow * E). We run a loop while there
is an augmenting path. In worst case, we may add 1 unit flow in every iteration. Therefore the time
complexity becomes O(max_flow * E).

How to implement the above simple algorithm?
Let us first define the concept of Residual Graph which is needed for understanding the implementation.
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Residual Graph of a flow network is a graph which indicates additional possible flow. If there is a path
from source to sink in residual graph, then it is possible to add flow. Every edge of a residual graph has a
value called residual capacity which is equal to original capacity of the edge minus current flow. Residual
capacity is basically the current capacity of the edge.
Let us now talk about implementation details. Residual capacity is 0 if there is no edge between to vertices
of residual graph. We can initialize the residual graph as original graph as there is no initial flow and
initially residual capacity is equal to original capacity. To find an augmenting path, we can either do a BFS
or DFS of the residual graph. We have used BFS in below implementation. Using BFS, we can find out if
there is a path from source to sink. BFS also builds parent[] array. Using the parent[] array, we traverse
through the found path and find possible flow through this path by finding minimum residual capacity along
the path. We later add the found path flow to overall flow.
The important thing is, we need to update residual capacities in the residual graph. We subtract path flow
from all edges along the path and we add path flow along the reverse edges We need to add path flow along

reverse edges because may later need to send flow in reverse direction (See following video for example).
http://www.youtube.com/watch?v=-8Mw{gB-lyM

Following is C++ implementation of Ford-Fulkerson algorithm. To keep things simple, graph is represented
as a 2D matrix.

// C++ program for implementation of Ford Fulkerson a.
#include <iostream>

#include <limits.h>

#include <string.h>

#include <queue>

using namespace std;

// Number of vertices in given graph
#define V 6

/* Returns true if there is a path from source 's' to
residual graph. Also fills parent[] to store the pa
bool bfs(int rGraph[V][V], int s, int t, int parent[]
{
// Create a visited array and mark all vertices a
bool visited[V];
memset(visited, @, sizeof(visited));

// Create a queue, enqueue source vertex and mark
// as visited

queue <int> q;

q.push(s);

visited[s] = true;

parent[s] = -1;

// Standard BFS Loop
while (!q.empty())
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{
int u = q.front();
q.pop();
for (int v=0; v<V; v++)
{
if (visited[v]==false && rGraph[u][v] > ©
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}

// If we reached sink in BFS starting from source
// true, else false
return (visited[t] == true);

}

// Returns tne maximum flow from s to t in the given |
int fordFulkerson(int graph[V][V], int s, int t)
{

int u, v;

// Create a residual graph and fill the residual |
// given capacities in the original graph as resii
// 1in residual graph
int rGraph[V][V]; // Residual graph where rGraph[
// residual capacity of edge fro
// is an edge. If rGraph[i][j] i
for (U = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][V];

int parent[V]; // This array is filled by BFS an
int max_flow = @; // There is no flow initially

// Augment the flow while tere is path from sourc
while (bfs(rGraph, s, t, parent))
{
// Find minimum residual capacity of the edhe
// path filled by BFS. Or we can say find the
// through the path found.
int path_flow = INT_MAX;
for (v=t; v!=s; v=parent[v])
{
u = parent[v];
path _flow = min(path_flow, rGraph[u][Vv]);
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// update residual capacities of the edges an
// along the path
for (v=t; v != s; v=parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}

// Add path flow to overall flow
max_flow += path_flow;

}

// Return the overall flow
return max_flow;

}

// Driver program to test above functions
int main()

{
// Let us create a graph shown in the above examp
int graph[V][V] = { {9, 16, 13, @, 0, 0},
{0, o, 1o, 12, 0, 0},
{0, 4, o0, 0, 14, 0},
{6, @, 9, 0, 0, 20},
{e) 0) e) 7) e) 4})
{6, 0, 0, 0, 0, 0}
}s
cout << "The maximum possible flow is " << fordFu
return 0;
}
»
Output:

The maximum possible flow is 23

The above implementation of Ford Fulkerson Algorithm is called Edmonds-Karp Algorithm. The idea of
Edmonds-Karp is to use BFS in Ford Fulkerson implementation as BFS always picks a path with minimum

number of edges. When BFS is used, the worst case time complexity can be reduced to O(VE2). The above
implementation uses adjacency matrix representation though where BFS takes O(V?) time, the time

complexity of the above implementation is O(EV?) (Refer CLRS book for proof of time complexity)

This is an important problem as it arises in many practical situations. Examples include, maximizing the

transportation with given traffic limits, maximizing packet flow in computer networks.

Exercise:
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