Chinese Reminder Theorem

The Chinese Reminder Theorem is an ancient but important calculation algorithm in modular arithmetic. The Chinese Remainder Theorem enables one to solve simultaneous equations with respect to different moduli in considerable generality. Here we supplement the discussion in T\&W, $\S 3.4$, pp. 76-78.

The problem

Here is the statement of the problem that the Chinese Remainder Theorem solves.
Theorem (Chinese Remainder Theorem). Let m_{1}, \ldots, m_{k} be integers with $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ whenever $i \neq j$. Let m be the product $m=m_{1} m_{2} \cdots m_{k}$. Let a_{1}, \ldots, a_{k} be integers. Consider the system of congruences:

$$
\begin{align*}
& x \equiv a_{1} \quad\left(\bmod m_{1}\right) \\
& x \equiv a_{2} \quad\left(\bmod m_{2}\right) \tag{*}\\
& \ldots \\
& x \equiv a_{k} \quad\left(\bmod m_{k}\right) .
\end{align*}
$$

Then there exists exactly one $x \in \mathbf{Z}_{m}$ satisfying this system.

The algorithm

The solution to the system (*) may be obtained by the following algorithm.
Theorem (Chinese Remainder Theorem Algorithm). We may solve the system (*) as follows.
(1) For each $i=1, \ldots, k$, let $z_{i}=m / m i=m_{1} m_{2} \ldots m_{i-1} m_{i+1} \ldots m_{k}$.
(2) For each $i=1, \ldots, k$, let $y_{i}=z_{i}^{-1}\left(\bmod m_{i}\right)$. (Note that this is always possible because $\left.\operatorname{gcd}\left(z_{i}, m_{i}\right)=1.\right)$
(3) The solution to the system (*) is $x=a_{1} y_{1} z_{1}+\cdots+a_{k} y_{k} z_{k}$.

Proof. Why does the Chinese Remainder Theorem algorithm work? The notation makes the proof surprisingly simple to state. Let's study $x=a_{1} y_{1} z_{1}+\cdots+a_{k} y_{k} z_{k}$ and compute $x\left(\bmod m_{1}\right)$ for example. The same argument will work for $x\left(\bmod m_{i}\right)$ for $i>1$. The key observation (and a very clever one too) is that $z_{i} \equiv 0\left(\bmod m_{1}\right)$ when $i \neq 1$ since m_{1} divides $z_{i}=$ $m / m i=m_{1} m_{2} \ldots m_{i-1} m_{i+1} \ldots m_{k}$. Thus when we compute $x\left(\bmod m_{1}\right)$, we obtain $x \equiv a_{1} y_{1} z_{1}$ $\left(\bmod m_{1}\right)$. But $y_{1} z_{1} \equiv 1\left(\bmod m_{1}\right)$ by (2), and we obtain $x \equiv a_{1}\left(\bmod m_{1}\right)$.

Example of the Chinese Remainder Theorem

Use the Chinese Remainder Theorem to find all solutions in \mathbf{Z}_{60} such that

$$
\begin{aligned}
& x \equiv 3 \bmod 4 \\
& x \equiv 2 \bmod 3 \\
& x \equiv 4 \bmod 5
\end{aligned}
$$

We solve this in steps.
Step 0 Establish the basic notation. In this problem we have $k=3, a_{1}=3, a_{2}=2, a_{3}=4$, $m_{1}=4, m_{2}=3, m_{3}=5$, and $m=4 \cdot 3 \cdot 5=60$.

Step 1 Implement step (1). $z_{1}=m / m_{1}=60 / 4=3 \cdot 5=15, z_{2}=20$, and $z_{3}=12$.
Step 2 Implement step (2). We solve $z_{i} y_{i} \equiv 1 \bmod m_{i}, i=1,2,3$. In this problem, we need to solve

$$
\begin{aligned}
& 15 y_{1} \equiv 1 \bmod 4 \\
& 20 y_{2} \equiv 1 \bmod 3 \\
& 12 y_{3} \equiv 1 \bmod 5
\end{aligned}
$$

The y_{i} can be computed using the tally table version of the generalized Euclidean algorithm (cf. Congruence Supplement). For example, in the first equation for y_{1}, the tally method automatically solves $15 y_{1}+4 t=1$ for y_{1} and t, and we find that $y_{1}=3$. Continuing, we find that $y_{1}=3, y_{2}=2$, and $y_{3}=3$.

Step 3 Implement step (3). $x \equiv a_{1} y_{1} z_{1}+a_{2} y_{2} z_{2}+a_{3} y_{3} z_{3}(\bmod 60)$. Substituting, we obtain $3 \cdot 3 \cdot 15+2 \cdot 2 \cdot 20+4 \cdot 3 \cdot 12=359$ which reduces to $x \equiv 59(\bmod 60)$.

An application

The text (p. 74) emphasizes the opposite line of thought from the above. Now we wish to solve the equation $x \equiv a(\bmod m)$ where m is a multiple of two or more pairwise relatively prime integers. The Chinese Remainder Theorem Algorithm tells us that the x is precisely the solution to the modular system

$$
\begin{align*}
x & \equiv a_{1} \\
x \equiv a_{2} & \left(\bmod m_{1}\right) \tag{*}\\
\ldots & \\
x & \equiv a_{k} \\
& \left(\bmod m_{k}\right) .
\end{align*}
$$

Here the numbers m_{i} come by factoring $m=m_{1} m_{2} \cdots m_{k}$ where $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ whenever $i \neq j$.

Why do this? This is answered in the text (T\&W, p. 77). By breaking the problem into simultaneous congruences mod each prime factor of m, we can recombine the resulting information to obtain an answer for each prime factor power of m. The advantage is that it is often easier to analyze congruences mod primes (or mod prime powers) than to work with composite numbers.

Example. Here is an example. Find a solution to $13 x \equiv 1(\bmod 70)$. The two methods of solution are worthy of careful study.

Answer. We can do this particular example two ways. First notice that $13^{-1}=27(\bmod 70)$ by the usual tally table generalization of the Euclidean algorithm. So the given problem is equivalent to $x \equiv 27(\bmod 70)$.

We can also do it by the Chinese Remainder Theorem. Now $70=2 \cdot 5 \cdot 7$. First solve

$$
\begin{aligned}
& 13 r_{1} \equiv 1 \bmod 2 \\
& 13 r_{2} \equiv 1 \bmod 5 \\
& 13 r_{3} \equiv 1 \bmod 7
\end{aligned}
$$

obtaining $r_{1}=1, r_{2}=2$, and $r_{3}=6$. Now solve

$$
\begin{aligned}
& x \equiv r_{1}=1 \quad(\bmod 2) \\
& x \equiv r_{2}=2 \quad(\bmod 5) \\
& x \equiv r_{3}=6 \quad(\bmod 7)
\end{aligned}
$$

by the Chinese Remainder Theorem, obtaining $x=27 \in \mathbf{Z}_{70}$ once more.

