
Errors in Potentiometer Experiment

Errors in Potentiometer Experiment

Question: Two students were performing the potentiometer experiment to determine the emf of a cell using the circuit shown in the figure.

The cell was connected between the points P and Q. Due to some error, they both failed to get a null point on the potentiometer wire. As the jockey J was moved from A to B, the galvanometer deflection gradually increased for the first student and it gradually decreased for the second student. State with reason, the possible errors committed by the students.

Errors in Potentiometer Experiment

CONCEPTS

Principle of Potentiometer

When a constant current (I) flows through a wire of uniform area of cross-section (A), then the potential difference across any segment of it is directly proportional to the length of that segment.

Resistance
$$R = \frac{\rho L}{A}$$
 [ρ = resistivity] A R

Ohm's Law $\Rightarrow V = RI$

$$\therefore V = \frac{\rho L}{A}I$$

$$\Rightarrow \frac{V}{L} = const$$
 [ρ , I, A are constants]

Errors in Potentiometer Experiment

CONCEPTS

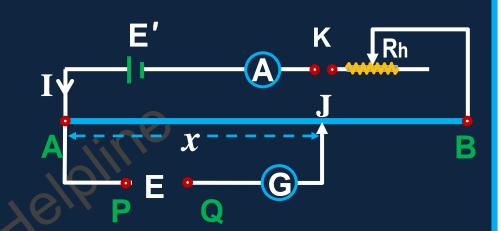
The Circuit

AB = Potentiometer wire of length L

E = emf of cell to be determined

E' = emf of cell sending current

J = NULL point


AJ = Balancing length

For no deflection in galvanometer, Potential at Q = Potential at J

∴ Potential drop across cell E = Potential drop across wire segment AJ

Potential gradient (V/L) along the wire AB = constant

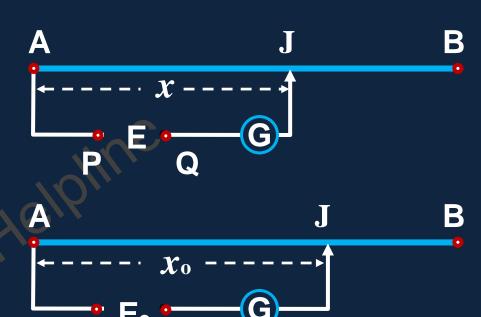
∴ Potential drop across length x is $E = \frac{V}{I} x$

CONCEPTS

Errors in Potentiometer Experiment

Comparison of emf of two cells

For unknown cell E balancing Length = x


$$\Rightarrow E = \frac{V}{L}x$$

For known cell E_0 balancing Length = x_0

$$\Rightarrow E_o = \frac{V}{L} x_o$$

$$\Rightarrow \frac{E}{E_o} = \frac{x}{x_o} \Rightarrow E = \frac{x}{x_o}.E_o$$

 \therefore E can be determined knowing x, x_o and E_o

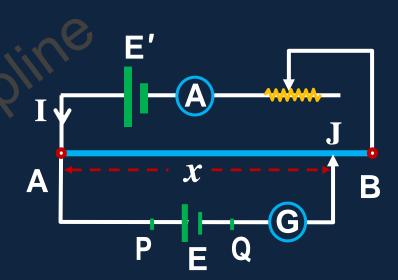
Errors in Potentiometer Experiment

CONCEPTS

Conditions necessary to get a null point

Condition-1: E < V < E'

To get a null point, emf of the cell E should be less than the potential drop V across AB which is less than the emf of the cell E'.


Condition-2: +ve terminals of E and E' should be connected at A.

Potential should decrease from A to B along the wire and from A to Q through cell E.

Potential drop across AB = V

Let Potential at A = V

Then Potential at B = 0

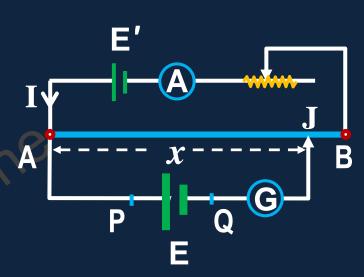
Errors in Potentiometer Experiment

When condition-1 is violated: (E>E')

Potential at
$$A = V$$
 : Potential at $Q = (V - E) [< 0]$

When J is at A, PD across galvanometer is

$$V_G = V_A - V_O = V - (V - E) = E$$
 [>0]


When J is at B, PD across galvanometer is

$$V_G = V_B - V_O = 0 - (V - E) = E - V$$
 [> 0, as E > E' > V]

$$V_G = V_B - V_Q = 0 - (V - E) = E - V$$
 [> 0, as E > E' > V]

Potential difference across Galvanometer decreases from (E) at A to (E - V) at B

- ... Galvanometer deflection gradually decreases but it is never zero.
- ∴ The second student violated condition-1

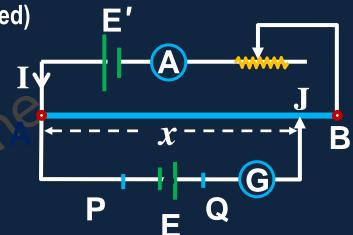
Errors in Potentiometer Experiment

When condition-2 is violated: (E is wrongly connected)

Potential at
$$P = V$$
 : Potential at $Q = (V + E)$

When J is at A, PD across galvanometer is

$$V_G = V_O - V_A = (V + E) - V = E$$
 [>0]


When J is at B, PD across galvanometer is

$$V_G = V_O - V_B = (V + E) - 0 = E + V$$
 [>0]

Potential difference across galvanometer increases from (E) at A to (E + V) at B

- ... Galvanometer deflection gradually increases but it is never zero.
- ... The first student violated condition-2

For More details: www.physics-helpline.com

Subscribe our channel: youtube.com/physics-helpline

Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline