
1

Java ExceptionJava Exception
HandlingHandling

2

Topics
● What is an Exception?
● What happens when an Exception occurs?
● Benefits of Exception Handling framework
● Catching exceptions with try-catch
● Catching exceptions with finally
● Throwing exceptions
● Rules in exception handling
● Exception class hierarchy
● Checked exception and unchecked exception
● Creating your own exception class
● Assertions

3

What is an What is an
Exception?Exception?

4

What is an Exception?
● Exceptional event
● Error that occurs during runtime
● Cause normal program flow to be disrupted
● Examples

– Divide by zero errors
– Accessing the elements of an array beyond its range
– Invalid input
– Hard disk crash
– Opening a non-existent file
– Heap memory exhausted

5

Exception Example
1 class DivByZero {
2 public static void main(String args[]) {
3 System.out.println(3/0);
4 System.out.println(“Pls. print me.”);
5 }
6 }

6

Example: Default Exception
Handling

● Displays this error message
Exception in thread "main"
java.lang.ArithmeticException: / by zero

 at DivByZero.main(DivByZero.java:3)
● Default exception handler

– Provided by Java runtime
– Prints out exception description
– Prints the stack trace

● Hierarchy of methods where the exception occurred
– Causes the program to terminate

7

What Happens When What Happens When
an Exception Occurs?an Exception Occurs?

8

What Happens When an Exception
Occurs?

● When an exception occurs within a method, the
method creates an exception object and hands it off
to the runtime system
– Creating an exception object and handing it to the

runtime system is called “throwing an exception”
– Exception object contains information about the error,

including its type and the state of the program when the
error occurred

9

What Happens When an Exception
Occurs?

● The runtime system searches the call stack
for a method that contains an exception
handler

10

What Happens When an Exception
Occurs?

● When an appropriate handler is found, the runtime
system passes the exception to the handler
– An exception handler is considered appropriate if the

type of the exception object thrown matches the type that
can be handled by the handler

– The exception handler chosen is said to catch the
exception.

● If the runtime system exhaustively searches all the
methods on the call stack without finding an
appropriate exception handler, the runtime system
(and, consequently, the program) terminates and
uses the default exception handler

11

Searching the Call Stack for
an Exception Handler

12

Benefits of Exception Benefits of Exception
Handling FrameworkHandling Framework

13

Benefits of Java Exception
Handling Framework

● Separating Error-Handling code from “regular”
business logic code

● Propagating errors up the call stack
● Grouping and differentiating error types

14

Separating Error Handling Code
from Regular Code

● In traditional programming, error detection,
reporting, and handling often lead to confusing
spaghetti code

● Consider pseudocode method here that reads an
entire file into memory
readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

15

Traditional Programming: No
separation of error handling code
● In traditional programming, To handle such cases,

the readFile function must have more code to do
error detection, reporting, and handling.

errorCodeType readFile {
 initialize errorCode = 0;

 open the file;
 if (theFileIsOpen) {
 determine the length of the file;
 if (gotTheFileLength) {
 allocate that much memory;
 if (gotEnoughMemory) {
 read the file into memory;
 if (readFailed) {
 errorCode = -1;
 }
 } else {
 errorCode = -2;
 }

16

Traditional Programming: No
separation of error handling code
●

 } else {
 errorCode = -3;
 }
 close the file;
 if (theFileDidntClose && errorCode == 0) {
 errorCode = -4;
 } else {
 errorCode = errorCode and -4;
 }
 } else {
 errorCode = -5;
 }
 return errorCode;
}

17

Separating Error Handling Code
from Regular Code

● Exceptions enable you to write the main flow of
your code and to deal with the exceptional cases
elsewhere

readFile {
 try {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
 } catch (fileOpenFailed) {
 doSomething;
 } catch (sizeDeterminationFailed) {
 doSomething;
 } catch (memoryAllocationFailed) {
 doSomething;
 } catch (readFailed) {
 doSomething;
 } catch (fileCloseFailed) {
 doSomething;
 }
}

18

Separating Error Handling Code
from Regular Code

● Note that exceptions don't spare you the effort of
doing the work of detecting, reporting, and handling
errors, but they do help you organize the work more
effectively.

19

Propagating Errors Up the Call Stack
● Suppose that the readFile method is the fourth method in a

series of nested method calls made by the main program:
method1 calls method2, which calls method3, which finally
calls readFile

● Suppose also that method1 is the only method interested in
the errors that might occur within readFile.

method1 {
 call method2;
}

method2 {
 call method3;
}

method3 {
 call readFile;
}

20

Traditional Way of Propagating Errors
method1 {

 errorCodeType error;
 error = call method2;
 if (error)
 doErrorProcessing;
 else
 proceed;
}

errorCodeType method2 {
 errorCodeType error;
 error = call method3;
 if (error)
 return error;
 else
 proceed;
}

errorCodeType method3 {
 errorCodeType error;
 error = call readFile;
 if (error)
 return error;
 else
 proceed;
}

● Traditional error-
notification techniques
force method2 and
method3 to propagate
the error codes returned
by readFile up the call
stack until the error
codes finally reach
method1—the only
method that is
interested in them.

21

Using Java Exception Handling
method1 {

 try {

 call method2;

 } catch (exception e) {

 doErrorProcessing;

 }

}

method2 throws exception {

 call method3;

}

method3 throws exception {

 call readFile;

}

● A method can duck any
exceptions thrown
within it, thereby
allowing a method
farther up the call stack
to catch it. Hence, only
the methods that care
about errors have to
worry about detecting
errors

● Any checked exceptions
that can be thrown
within a method must
be specified in its
throws clause.

22

Grouping and Differentiating Error
Types

● Because all exceptions thrown within a program are
objects, the grouping or categorizing of exceptions
is a natural outcome of the class hierarchy

● An example of a group of related exception classes
in the Java platform are those defined in java.io —
IOException and its descendants
– IOException is the most general and represents any type

of error that can occur when performing I/O
– Its descendants represent more specific errors. For

example, FileNotFoundException means that a file could
not be located on disk.

23

Grouping and Differentiating Error
Types

● A method can write specific handlers that can
handle a very specific exception

● The FileNotFoundException class has no
descendants, so the following handler can handle
only one type of exception.

catch (FileNotFoundException e) {
 ...
}

24

Grouping and Differentiating Error
Types

● A method can catch an exception based on its
group or general type by specifying any of the
exception's superclasses in the catch statement.
For example, to catch all I/O exceptions, regardless
of their specific type, an exception handler specifies
an IOException argument.

// Catch all I/O exceptions, including
// FileNotFoundException, EOFException, and so on.
catch (IOException e) {
 ...
}

25

Catching ExceptionsCatching Exceptions
with try-catchwith try-catch

26

Catching Exceptions:
The try-catch Statements

● Syntax:
try {
 <code to be monitored for exceptions>
} catch (<ExceptionType1> <ObjName>) {
 <handler if ExceptionType1 occurs>
}
...
} catch (<ExceptionTypeN> <ObjName>) {
 <handler if ExceptionTypeN occurs>
}

27

Catching Exceptions:
The try-catch Statements

1 class DivByZero {
2 public static void main(String args[]) {
3 try {
4 System.out.println(3/0);
5 System.out.println(“Please print me.”);
6 } catch (ArithmeticException exc) {
7 //Division by zero is an ArithmeticException
8 System.out.println(exc);
9 }
10 System.out.println(“After exception.”);
11 }
12 }

28

Catching Exceptions:
Multiple catch

1 class MultipleCatch {
2 public static void main(String args[]) {
3 try {
4 int den = Integer.parseInt(args[0]);
5 System.out.println(3/den);
6 } catch (ArithmeticException exc) {
7 System.out.println(“Divisor was 0.”);
8 } catch (ArrayIndexOutOfBoundsException exc2) {
9 System.out.println(“Missing argument.”);
10 }
11 System.out.println(“After exception.”);
12 }
13 }

29

Catching Exceptions:
Nested try's

class NestedTryDemo {
 public static void main(String args[]){
 try {
 int a = Integer.parseInt(args[0]);
 try {
 int b = Integer.parseInt(args[1]);
 System.out.println(a/b);
 } catch (ArithmeticException e) {
 System.out.println(“Div by zero error!");
 }
 //continued...

30

Catching Exceptions:
Nested try's

 } catch (ArrayIndexOutOfBoundsException) {
 System.out.println(“Need 2 parameters!");
 }
 }
}

31

Catching Exceptions:
Nested try's with methods

1 class NestedTryDemo2 {
2 static void nestedTry(String args[]) {
3 try {
4 int a = Integer.parseInt(args[0]);
5 int b = Integer.parseInt(args[1]);
6 System.out.println(a/b);
7 } catch (ArithmeticException e) {
8 System.out.println("Div by zero error!");
9 }
10 }
11 //continued...

32

Catching Exceptions:
Nested try's with methods

12 public static void main(String args[]){
13 try {
14 nestedTry(args);
15 } catch (ArrayIndexOutOfBoundsException e) {
16 System.out.println("Need 2 parameters!");
17 }
18 }
19 }

33

Catching ExceptionsCatching Exceptions
with finallywith finally

34

Catching Exceptions:
The finally Keyword

● Syntax:
try {
 <code to be monitored for exceptions>
} catch (<ExceptionType1> <ObjName>) {
 <handler if ExceptionType1 occurs>
} ...
} finally {
 <code to be executed before the try block ends>
}

● Contains the code for cleaning up after a try or a
catch

35

Catching Exceptions:
The finally Keyword

● Block of code is always executed despite of
different scenarios:
– Forced exit occurs using a return, a continue or a break

statement
– Normal completion
– Caught exception thrown

● Exception was thrown and caught in the method
– Uncaught exception thrown

● Exception thrown was not specified in any catch block in
the method

36

Catching Exceptions:
The finally Keyword

1 class FinallyDemo {
2 static void myMethod(int n) throws Exception{
3 try {
4 switch(n) {
5 case 1: System.out.println("1st case");
6 return;
7 case 3: System.out.println("3rd case");
8 throw new RuntimeException("3!");
9 case 4: System.out.println("4th case");
10 throw new Exception("4!");
11 case 2: System.out.println("2nd case");
12 }
13 //continued...

37

Catching Exceptions:
The finally Keyword

14 } catch (RuntimeException e) {
15 System.out.print("RuntimeException: ");
16 System.out.println(e.getMessage());
17 } finally {
18 System.out.println("try-block entered.");
19 }
20 }
21 //continued...

38

Catching Exceptions:
The finally Keyword

22 public static void main(String args[]){
23 for (int i=1; i<=4; i++) {
24 try {
25 FinallyDemo.myMethod(i);
26 } catch (Exception e){
27 System.out.print("Exception caught: ");
28 System.out.println(e.getMessage());
29 }
30 System.out.println();
31 }
32 }
33 }

39

Throwing Throwing
ExceptionsExceptions

40

Throwing Exceptions:
The throw Keyword

● Java allows you to throw exceptions (generate
exceptions)
throw <exception object>;

● An exception you throw is an object
– You have to create an exception object in the same way

you create any other object
● Example:

throw new ArithmeticException(“testing...”);

41

Example: Throwing Exceptions

1 class ThrowDemo {
2 public static void main(String args[]){
3 String input = “invalid input”;
4 try {
5 if (input.equals(“invalid input”)) {
6 throw new RuntimeException("throw demo");
7 } else {
8 System.out.println(input);
9 }
10 System.out.println("After throwing");
11 } catch (RuntimeException e) {
12 System.out.println("Exception caught:" + e);
13 }
14 }
15 }

42

Rules in Exception Rules in Exception
HandlingHandling

43

Rules on Exceptions

● A method is required to either catch or list all
exceptions it might throw
– Except for Error or RuntimeException, or their

subclasses
● If a method may cause an exception to occur but

does not catch it, then it must say so using the
throws keyword
– Applies to checked exceptions only

● Syntax:
<type> <methodName> (<parameterList>)
throws <exceptionList> {

 <methodBody>
}

44

Example: Method throwing an
Exception

1 class ThrowingClass {
2 static void meth() throws ClassNotFoundException {
3 throw new ClassNotFoundException ("demo");
4 }
5 }
6 class ThrowsDemo {
7 public static void main(String args[]) {
8 try {
9 ThrowingClass.meth();
10 } catch (ClassNotFoundException e) {
11 System.out.println(e);
12 }
13 }
14 }

45

 Exception ClassException Class
HierarchyHierarchy

46

The Error and Exception Classes
● Throwable class

– Root class of exception classes
– Immediate subclasses

● Error
● Exception

● Exception class
– Conditions that user programs can reasonably deal with
– Usually the result of some flaws in the user program

code
– Examples

● Division by zero error
● Array out-of-bounds error

47

The Error and Exception Classes

● Error class
– Used by the Java run-time system to handle errors

occurring in the run-time environment
– Generally beyond the control of user programs
– Examples

● Out of memory errors
● Hard disk crash

48

Exception Classes and Hierarchy

49

Exception Classes and Hierarchy
● Multiple catches should be ordered from subclass

to superclass.
1 class MultipleCatchError {
2 public static void main(String args[]){
3 try {
4 int a = Integer.parseInt(args [0]);
5 int b = Integer.parseInt(args [1]);
6 System.out.println(a/b);
7 } catch (Exception ex) {
8 } catch (ArrayIndexOutOfBoundsException e) {
9 }
10 }
11 }

50

 Checked Exceptions &Checked Exceptions &
Unchecked ExceptionsUnchecked Exceptions

51

Checked and Unchecked
Exceptions

● Checked exception
– Java compiler checks if the program either catches or lists the

occurring checked exception
– If not, compiler error will occur

● Unchecked exceptions
– Not subject to compile-time checking for exception handling
– Built-in unchecked exception classes

● Error
● RuntimeException
● Their subclasses

– Handling all these exceptions may make the program cluttered
and may become a nuisance

52

 Creating Your OwnCreating Your Own
Exception ClassException Class

53

Creating Your Own Exception
Class

● Steps to follow
– Create a class that extends the RuntimeException or the
Exception class

– Customize the class
● Members and constructors may be added to the class

● Example:
1 class HateStringExp extends RuntimeException {
2 /* some code */
3 }

54

How To Use Your Own Exceptions

1 class TestHateString {
2 public static void main(String args[]) {
3 String input = "invalid input";
4 try {
5 if (input.equals("invalid input")) {
6 throw new HateStringExp();
7 }
8 System.out.println("Accept string.");
9 } catch (HateStringExp e) {
10 System.out.println("Hate string!”);
11 }
12 }
13 }

55

 AssertionsAssertions

56

What are Assertions?

● Allow the programmer to find out if an assumption
was met
– Example: month

● Extension of comments wherein the assert
statement informs the person reading the code that
a particular condition should always be satisfied
– Running the program informs you if assertions made are

true or not
– If an assertion is not true, an AssertionError is thrown

● User has the option to turn it off or on at runtime

57

Enabling or Disabling Assertions

● Program with assertions may not work properly if
used by clients not aware that assertions were
used in the code

● Compiling
– With assertion feature:

javac –source 1.4 MyProgram.java
– Without the assertion feature:

javac MyProgram.java
● Enabling assertions:

– Use the –enableassertions or –ea switch.
java –enableassertions MyProgram

58

Assert Syntax

● Two forms:
– Simpler form:

assert <expression1>;
where
● <expression1> is the condition asserted to be true

– Other form:
assert <expression1> : <expression2>;
where
● <expression1> is the condition asserted to be true
● <expression2> is some information helpful in diagnosing why the statement failed

59

Assert Syntax
1 class AgeAssert {
2 public static void main(String args[]) {
3 int age = Integer.parseInt(args[0]);
4 assert(age>0);
5 /* if age is valid (i.e., age>0) */
6 if (age >= 18) {
7 System.out.println(“You're an adult! =)”);
8 }
9 }
10 }

60

Thank You!Thank You!

