
Introduction to Programming 1 1

4 Programming
Fundamentals

Introduction to Programming 1 2

Objectives
At the end of the lesson, the student should be able to:

● Identify the basic parts of a Java program
● Differentiate among Java literals, primitive data types,

variable types ,identifiers and operators
● Develop a simple valid Java program using the concepts

learned in this chapter

Introduction to Programming 1 3

Dissecting my First Java
Program

1 public class Hello
2 {
3 /**
4 * My first Java program
5 */
6 public static void main(String[] args){
7
8 //prints the string Hello world on screen
9 System.out.println(“Hello world”);
10
11 }
12 }

Introduction to Programming 1 4

● indicates the name of the class which is Hello
● In Java, all code should be placed inside a class declaration
● The class uses an access specifier public, which indicates

that our class in accessible to other classes from other
packages (packages are a collection of classes). We will be
covering packages and access specifiers later.

1 public class Hello
2 {
3 /**
4 * My first Java program
5 */

Dissecting my First Java
Program

Introduction to Programming 1 5

1 public class Hello
2 {
3 /**
4 * My first Java program
5 */

Dissecting my First Java
Program

● The next line which contains a curly brace { indicates the
start of a block.

● In this code, we placed the curly brace at the next line after
the class declaration, however, we can also place this next
to the first line of our code. So, we could actually write our
code as:

 public class Hello{

Introduction to Programming 1 6

● The next three lines indicates a Java comment.
● A comment

– something used to document a part of a code.
– It is not part of the program itself, but used for documentation

purposes.
– It is good programming practice to add comments to your code.

1 public class Hello
2 {
3 /**
4 * My first Java program
5 */

Dissecting my First Java
Program

Introduction to Programming 1 7

● indicates the name of one method in Hello which is the main
method.

● The main method is the starting point of a Java program.
● All programs except Applets written in Java start with the

main method.
● Make sure to follow the exact signature.

1 public class Hello
2 {
3 /**
4 * My first Java program
5 */
6 public static void main(String[] args){

Dissecting my First Java
Program

Introduction to Programming 1 8

● The next line is also a Java comment

1 public class Hello
2 {
3 /**
4 * My first Java program
5 */
6 public static void main(String[] args){
7
8 //prints the string “Hello world” on screen

Dissecting my First Java
Program

Introduction to Programming 1 9

● The command System.out.println(), prints the text enclosed
by quotation on the screen.

1 public class Hello
2 {
3 /**
4 * My first Java program
5 */
6 public static void main(String[] args){
7
8 //prints the string “Hello world” on screen
9 System.out.println(“Hello world”);

Dissecting my First Java
Program

Introduction to Programming 1 10

● The last two lines which contains the two curly braces is
used to close the main method and class respectively.

1 public class Hello
2 {
3 /**
4 * My first Java program
5 */
6 public static void main(String[] args){
7
8 //prints the string “Hello world” on screen
9 System.out.println(“Hello world”);
10
11 }
12 }

Dissecting my First Java
Program

Introduction to Programming 1 11

Coding Guidelines
1. Your Java programs should always end with the .java

extension.

2. Filenames should match the name of your public class. So
for example, if the name of your public class is Hello, you
should save it in a file called Hello.java.

3. You should write comments in your code explaining what a
certain class does, or what a certain method do.

Introduction to Programming 1 12

Java Comments
● Comments

– These are notes written to a code for documentation purposes.
– Those texts are not part of the program and does not affect the flow

of the program.

● 3 Types of comments in Java
– C++ Style Comments
– C Style Comments
– Special Javadoc Comments

Introduction to Programming 1 13

Java Comments
● C++-Style Comments

– C++ Style comments starts with //
– All the text after // are treated as comments
– For example:
 // This is a C++ style or single line comments

Introduction to Programming 1 14

Java Comments
● C-Style Comments

– C-style comments or also called multiline comments starts with a /*
and ends with a */.

– All text in between the two delimeters are treated as comments.
– Unlike C++ style comments, it can span multiple lines.
– For example:
 /* this is an exmaple of a
 C style or multiline comments */

Introduction to Programming 1 15

Java Comments
● Special Javadoc Comments

– Special Javadoc comments are used for generating an HTML
documentation for your Java programs.

– You can create javadoc comments by starting the line with /** and
ending it with */.

– Like C-style comments, it can also span lines.
– It can also contain certain tags to add more information to your

comments.
– For example:
 /** This is an example of special java doc

 comments used for \n generating an html
 documentation. It uses tags like:

@author Florence Balagtas
@version 1.2

*/

Introduction to Programming 1 16

Java Statements
● Statement

– one or more lines of code terminated by a semicolon.
– Example:

System.out.println(“Hello world”);

Introduction to Programming 1 17

Java Blocks
● Block

– is one or more statements bounded by an opening and closing curly
braces that groups the statements as one unit.

– Block statements can be nested indefinitely.
– Any amount of white space is allowed.
– Example:

public static void main(String[] args){
System.out.println("Hello");
System.out.println("world”);

}

Introduction to Programming 1 18

Java Statements and Blocks
Coding Guidelines

1. In creating blocks, you can place the opening curly brace in
line with the statement. For example:
public static void main(String[] args){

 or you can place the curly brace on the next line, like,
public static void main(String[] args)
{

Introduction to Programming 1 19

Java Statements and Blocks
Coding Guidelines

2. You should indent the next statements after the start of a
block. For example:
public static void main(String[] args){

System.out.println("Hello");
System.out.println("world");

}

Introduction to Programming 1 20

Java Identifiers
● Identifiers

– are tokens that represent names of variables, methods, classes, etc.
– Examples of identifiers are: Hello, main, System, out.

● Java identifiers are case-sensitive.
– This means that the identifier Hello is not the same as hello.

Introduction to Programming 1 21

Java Identifiers
● Identifiers must begin with either a letter, an underscore “_”,

or a dollar sign “$”. Letters may be lower or upper case.
Subsequent characters may use numbers 0 to 9.

● Identifiers cannot use Java keywords like class, public, void,
etc. We will discuss more about Java keywords later.

Introduction to Programming 1 22

Java Identifiers
Coding Guidelines

1. For names of classes, capitalize the first letter of the class name.
For example,

ThisIsAnExampleOfClassName

2. For names of methods and variables, the first letter of the word
should start with a small letter. For example,

thisIsAnExampleOfMethodName

Introduction to Programming 1 23

Java Identifiers
Coding Guidelines

3. In case of multi-word identifiers, use capital letters to indicate the
start of the word except the first word. For example,

charArray, fileNumber, ClassName.

4. Avoid using underscores at the start of the identifier such as _read
or _write.

Introduction to Programming 1 24

Java Keywords
● Keywords are predefined identifiers reserved by Java for a

specific purpose.
● You cannot use keywords as names for your variables,

classes, methods ... etc.
● The next slide contains the list of the Java Keywords.

Introduction to Programming 1 25

Java Keywords

Introduction to Programming 1 26

Java Literals
● Literals are tokens that do not change - they are constant.
● The different types of literals in Java are:

– Integer Literals
– Floating-Point Literals
– Boolean Literals
– Character Literals
– String Literals

Introduction to Programming 1 27

Java Literals: Integer
● Integer literals come in different formats:

– decimal (base 10)
– hexadecimal (base 16)
– octal (base 8).

Introduction to Programming 1 28

Java Literals: Integer
● Special Notations in using integer literals in our programs:

– Decimal
● No special notation
● example: 12

– Hexadecimal
● Precede by 0x or 0X
● example: 0xC

– Octal
● Precede by 0
● example: 014

Introduction to Programming 1 29

Java Literals: Floating Point
● Represents decimals with fractional parts

– Example: 3.1416

● Can be expressed in standard or scientific notation
– Example: 583.45 (standard), 5.8345e2 (scientific)

Introduction to Programming 1 30

Java Literals: Boolean
● Boolean literals have only two values, true or false.

Introduction to Programming 1 31

Java Literals: Character
● Character Literals represent single Unicode characters.

● Unicode character
– a 16-bit character set that replaces the 8-bit ASCII character set.
– Unicode allows the inclusion of symbols and special characters from

other languages.

Introduction to Programming 1 32

Java Literals: Character
● To use a character literal, enclose the character in single

quote delimiter.

● For example
– the letter a, is represented as ‘a’.
– special characters such as a newline character, a backslash is used

followed by the character code. For example, ‘\n’ for the newline
character, ‘\r’ for the carriage return, ‘\b’ for backspace.

Introduction to Programming 1 33

Java Literals: String
● String literals represent multiple characters and are

enclosed by double quotes.

● An example of a string literal is, “Hello World”.

Introduction to Programming 1 34

Primitive Data Types
● The Java programming language defines eight primitive

data types.
– boolean (for logical)
– char (for textual)
– byte
– short
– int
– long (integral)
– double
– float (floating point).

Introduction to Programming 1 35

Primitive Data Types:
Logical-boolean

● A boolean data type represents two states: true and false.

● An example is,
boolean result = true;

● The example shown above, declares a variable named
result as boolean type and assigns it a value of true.

Introduction to Programming 1 36

Primitive Data Types:
Textual-char

● A character data type (char), represents a single Unicode
character.

● It must have its literal enclosed in single quotes(’ ’).
● For example,

‘a’ //The letter a
‘\t’ //A tab

● To represent special characters like ' (single quotes) or
" (double quotes), use the escape character \. For example,

 '\'' //for single quotes
'\"' //for double quotes

Introduction to Programming 1 37

Primitive Data Types:
Textual-char

● Although, String is not a primitive data type (it is a Class),
we will just introduce String in this section.

● A String represents a data type that contains multiple
characters. It is not a primitive data type, it is a class.

● It has its literal enclosed in double quotes(“”).

● For example,
String message=“Hello world!”;

Introduction to Programming 1 38

Primitive Data Types: Integral
– byte, short, int & long

● Integral data types in Java uses three forms – decimal, octal
or hexadecimal.

● Examples are,
2 //The decimal value 2
077 //The leading 0 indicates an octal value
0xBACC //The leading 0x indicates a hex value

● Integral types has int as default data type.
● You can define its long value by appending the letter l or L.
● For example:

10L

Introduction to Programming 1 39

Primitive Data Types: Integral
– byte, short, int & long

● Integral data type have the following ranges:

Introduction to Programming 1 40

Primitive Data Types: Integral
– byte, short, int & long

● Coding Guidelines:
– In defining a long value, a lowercase L is not recommended because

it is hard to distinguish from the digit 1.

Introduction to Programming 1 41

Primitive Data Types:
Floating Point – float and

double
● Floating point types has double as default data type.
● Floating-point literal includes either a decimal point or one of

the following,
E or e //(add exponential value)
F or f //(float)
D or d //(double)

● Examples are,
3.14 //A simple floating-point value (a double)
6.02E23 //A large floating-point value
2.718F //A simple float size value
123.4E+306D//A large double value with redundant D

Introduction to Programming 1 42

Primitive Data Types:
Floating Point – float and

double
● Floating-point data types have the following ranges:

Introduction to Programming 1 43

Variables
● A variable is an item of data used to store the state of

objects.

● A variable has a:
– data type

● The data type indicates the type of value that the variable can hold.

– name
● The variable name must follow rules for identifiers.

Introduction to Programming 1 44

Declaring and Initializing
Variables

● Declare a variable as follows:
<data type> <name> [=initial value];

● Note: Values enclosed in <> are required values, while
those values in [] are optional.

Introduction to Programming 1 45

Declaring and Initializing Variables:
Sample Program

1 public class VariableSamples {
2 public static void main(String[] args){
3 //declare a data type with variable name
4 // result and boolean data type
5 boolean result;
6
7 //declare a data type with variable name
8 // option and char data type
9 char option;
10 option = 'C'; //assign 'C' to option
11
12 //declare a data type with variable name
13 //grade, double data type and initialized
14 //to 0.0
15 double grade = 0.0;
16 }
17 }

Introduction to Programming 1 46

Declaring and Initializing
Variables: Coding Guidelines
1. It always good to initialize your variables as you declare

them.

2. Use descriptive names for your variables. Like for example,
if you want to have a variable that contains a grade for a
student, name it as, grade and not just some random letters
you choose.

Introduction to Programming 1 47

Declaring and Initializing
Variables: Coding Guidelines
3. Declare one variable per line of code. For example, the

variable declarations,
double exam=0;
double quiz=10;
double grade = 0;

 is preferred over the declaration,
double exam=0, quiz=10, grade=0;

Introduction to Programming 1 48

Outputting Variable Data
● In order to output the value of a certain variable, we can use

the following commands:
System.out.println()
System.out.print()

Introduction to Programming 1 49

Outputting Variable Data:
Sample Program

1 public class OutputVariable {
2 public static void main(String[] args){
3 int value = 10;
4 char x;
5 x = ‘A’;
6
7 System.out.println(value);
8 System.out.println(“The value of x=“ + x);
9 }
10 }

The program will output the following text on screen:

10
The value of x=A

Introduction to Programming 1 50

System.out.println() vs.
System.out.print()

● System.out.println()
– Appends a newline at the end of the data output

● System.out.print()
– Does not append newline at the end of the data output

Introduction to Programming 1 51

● Program 1:

Output:
HelloWorld

● Program 2:

Output:
Hello
World

System.out.println() vs.
System.out.print() Examples
System.out.print(“Hello”);
System.out.print(“World”);

System.out.println(“Hello”);
System.out.println(“World”);

Introduction to Programming 1 52

Reference Variables vs.
Primitive Variables

● Two types of variables in Java:
– Primitive Variables
– Reference Variables

● Primitive Variables
– variables with primitive data types such as int or long.
– stores data in the actual memory location of where the variable is

Introduction to Programming 1 53

Reference Variables vs.
Primitive Variables

● Reference Variables
– variables that stores the address in the memory location
– points to another memory location where the actual data is
– When you declare a variable of a certain class, you are actually

declaring a reference variable to the object with that certain class.

Introduction to Programming 1 54

Example
● Suppose we have two variables with data types int and

String.
int num = 10; // primitive type
String name = "Hello"; // reference type

Introduction to Programming 1 55

Example
● The picture shown below is the actual memory of your

computer, wherein you have the address of the memory
cells, the variable name and the data they hold.

Introduction to Programming 1 56

Operators
● Different types of operators:

– arithmetic operators
– relational operators
– logical operators
– conditional operators

● These operators follow a certain kind of precedence so that
the compiler will know which operator to evaluate first in
case multiple operators are used in one statement.

Introduction to Programming 1 57

Arithmetic Operators

Introduction to Programming 1 58

Arithmetic Operators:
Sample Program

1 public class ArithmeticDemo {
2 public static void main(String[] args){
3 //a few numbers
4 int i = 37;
5 int j = 42;
6 double x = 27.475;
7 double y = 7.22;
8 System.out.println("Variable values...");
9 System.out.println(" i = " + i);
10 System.out.println(" j = " + j);
11 System.out.println(" x = " + x);
12 System.out.println(" y = " + y);

 System.out.println("Adding...");
13 System.out.println(" i + j = " + (i + j));
14 System.out.println(" x + y = " + (x + y));

Introduction to Programming 1 59

Arithmetic Operators:
Sample Program

15 //subtracting numbers
16 System.out.println("Subtracting...");
17 System.out.println(" i - j = " + (i – j));
18 System.out.println(" x - y = " + (x – y));
19
20 //multiplying numbers
21 System.out.println("Multiplying...");
22 System.out.println(" i * j = " + (i * j));
23 System.out.println(" x * y = " + (x * y));
24
25 //dividing numbers
26 System.out.println("Dividing...");
27 System.out.println(" i / j = " + (i / j));
28 System.out.println(" x / y = " + (x / y));

Introduction to Programming 1 60

Arithmetic Operators:
Sample Program

29 //computing the remainder resulting from dividing
30 // numbers
31 System.out.println("Computing the remainder...");
32 System.out.println(" i % j = " + (i % j));
33 System.out.println(" x % y = " + (x % y));
34
35 //mixing types
36 System.out.println("Mixing types...");
37 System.out.println(" j + y = " + (j + y));
38 System.out.println(" i * x = " + (i * x));
39 }
40}

Introduction to Programming 1 61

Arithmetic Operators:
Sample Program Output

 Variable values...
 i = 37
 j = 42
 x = 27.475
 y = 7.22
 Adding...
 i + j = 79
 x + y = 34.695
 Subtracting...
 i - j = -5
 x - y = 20.255
 Multiplying...
 i * j = 1554
 x * y = 198.37

Dividing...
 i / j = 0
 x / y = 3.8054 Computing
the remainder...
 i % j = 37
 x % y = 5.815
Mixing types...
 j + y = 49.22
 i * x = 1016.58

Introduction to Programming 1 62

Arithmetic Operators
● Note:

– When an integer and a floating-point number are used as operands
to a single arithmetic operation, the result is a floating point. The
integer is implicitly converted to a floating-point number before the
operation takes place.

Introduction to Programming 1 63

Increment and Decrement
Operators

● unary increment operator (++)
● unary decrement operator (--)
● Increment and decrement operators increase and decrease a

value stored in a number variable by 1.
● For example, the expression,

count=count + 1;//increment the value of count by 1

is equivalent to,

count++;

Introduction to Programming 1 64

Increment and Decrement
Operators

Introduction to Programming 1 65

Increment and Decrement
Operators

● The increment and decrement operators can be placed
before or after an operand.

● When used before an operand, it causes the variable to be
incremented or decremented by 1, and then the new value
is used in the expression in which it appears.

● For example,
 int i = 10;
 int j = 3;
 int k = 0;
 k = ++j + i; //will result to k = 4+10 = 14

Introduction to Programming 1 66

Increment and Decrement
Operators

● When the increment and decrement operators are placed
after the operand, the old value of the variable will be used
in the expression where it appears.

● For example,
int i = 10;
int j = 3;
int k = 0;
k = j++ + i; //will result to k = 3+10 = 13

Introduction to Programming 1 67

Increment and Decrement
Operators: Coding

Guidelines
● Always keep expressions containing increment and

decrement operators simple and easy to understand.

Introduction to Programming 1 68

Relational Operators
● Relational operators compare two values and determines

the relationship between those values.
● The output of evaluation are the boolean values true or

false.

Introduction to Programming 1 69

Relational Operators:
Sample Program

1 public class RelationalDemo{
2 public static void main(String[] args){
3 //a few numbers
4 int i = 37;
5 int j = 42;
6 int k = 42;
7 System.out.println("Variable values...");
8 System.out.println(" i = " +i);
9 System.out.println(" j = " +j);
10 System.out.println(" k = " +k);
11 //greater than
12 System.out.println("Greater than...");
13 System.out.println(" i > j = "+(i>j));//false
14 System.out.println(" j > i = "+(j>i));//true
15 System.out.println(" k > j = "+(k>j));//false

Introduction to Programming 1 70

Relational Operators:
Sample Program

16 //greater than or equal to
17 System.out.println("Greater than or equal to...");
18 System.out.println(" i >= j = "+(i>=j));//false
19 System.out.println(" j >= i = "+(j>=i));//true
20 System.out.println(" k >= j = "+(k>=j));//true
21 //less than
22 System.out.println("Less than...");
23 System.out.println(" i < j = "+(i<j));//true
24 System.out.println(" j < i = "+(j<i));//false
25 System.out.println(" k < j = "+(k<j));//false
26 //less than or equal to
27 System.out.println("Less than or equal to...");
28 System.out.println(" i <= j = "+(i<=j));//true
29 System.out.println(" j <= i = "+(j<=i));//false
30 System.out.println(" k <= j = "+(k<=j));//true

Introduction to Programming 1 71

Relational Operators:
Sample Program

31 //equal to
32 System.out.println("Equal to...");
33 System.out.println(" i == j = " + (i==j));//false
34 System.out.println(" k == j = " + (k==j));//true
35 //not equal to
36 System.out.println("Not equal to...");
37 System.out.println(" i != j = " + (i!=j));//true
38 System.out.println(" k != j = " + (k!=j));//false
39 }
40 }

Introduction to Programming 1 72

Relational Operators:
Sample Program Output

 Variable values...
 i = 37
 j = 42
 k = 42
 Greater than...
 i > j = false
 j > i = true
 k > j = false
 Greater than or equal to...
 i >= j = false
 j >= i = true
 k >= j = true
 Less than...
 i < j = true
 j < i = false
 k < j = false

 Less than or equal to...
 i <= j = true
 j <= i = false
 k <= j = true
 Equal to...
 i == j = false
 k == j = true
 Not equal to...
 i != j = true
 k != j = false

Introduction to Programming 1 73

Logical Operators
● Logical operators have one or two boolean operands that

yield a boolean result.
● There are six logical operators:

– && (logical AND)
– & (boolean logical AND)
– || (logical OR)
– | (boolean logical inclusive OR)
– ^ (boolean logical exclusive OR)
– ! (logical NOT)

Introduction to Programming 1 74

Logical Operators
● The basic expression for a logical operation is,

x1 op x2
where,
x1, x2 - can be boolean expressions, variables or constants
op - is either &&, &, ||, | or ^ operator.

● The truth tables that will be shown next, summarize the
result of each operation for all possible combinations of x1
and x2.

Introduction to Programming 1 75

● Here is the truth table for && and &,

Logical Operators: &&(logical)
and &(boolean logical) AND

Introduction to Programming 1 76

● The basic difference between && and & operators :
– && supports short-circuit evaluations (or partial evaluations), while &

doesn't.

● Given an expression:
exp1 && exp2

– && will evaluate the expression exp1, and immediately return a false
value is exp1 is false.

– If exp1 is false, the operator never evaluates exp2 because the
result of the operator will be false regardless of the value of exp2.

● In contrast, the & operator always evaluates both exp1 and
exp2 before returning an answer.

Logical Operators: &&(logical)
and &(boolean logical) AND

Introduction to Programming 1 77

1 public class TestAND {
2 public static void main(String[] args){
3 int i = 0;
4 int j = 10;
5 boolean test= false;
6 //demonstrate &&
7 test = (i > 10) && (j++ > 9);
8 System.out.println(i);
9 System.out.println(j);
10 System.out.println(test);
11 //demonstrate &
12 test = (i > 10) & (j++ > 9);
13 System.out.println(i);
14 System.out.println(j);
15 System.out.println(test);
16 }
17 }

Logical Operators: &&(logical)
and &(boolean logical) AND

Introduction to Programming 1 78

● The output of the program is,
 0
 10
 false
 0
 11
 false

● Note, that the j++ on the line containing the && operator is
not evaluated since the first expression (i>10) is already
equal to false.

Logical Operators: &&(logical)
and &(boolean logical) AND

Introduction to Programming 1 79

Logical Operators: || (logical) and
| (boolean logical) inclusive OR

● Here is the truth table for || and |,

Introduction to Programming 1 80

● The basic difference between || and I operators :
– || supports short-circuit evaluations (or partial evaluations), while |

doesn't.
● Given an expression:

exp1 || exp2
– || will evaluate the expression exp1, and immediately return a true

value is exp1 is true
– If exp1 is true, the operator never evaluates exp2 because the result

of the operator will be true regardless of the value of exp2.
– In contrast, the | operator always evaluates both exp1 and exp2

before returning an answer.

Logical Operators: || (logical) and
| (boolean logical) inclusive OR

Introduction to Programming 1 81

1 public class TestOR {
2 public static void main(String[] args){
3 int i = 0;
4 int j = 10;
5 boolean test= false;
6 //demonstrate ||
7 test = (i < 10) || (j++ > 9);
8 System.out.println(i);
9 System.out.println(j);
10 System.out.println(test);
11 //demonstrate |
12 test = (i < 10) | (j++ > 9);
13 System.out.println(i);
14 System.out.println(j);
15 System.out.println(test);
16 }
17 }

Logical Operators: || (logical) and
| (boolean logical) inclusive OR

Introduction to Programming 1 82

● The output of the program is,
 0
 10
 true
 0
 11
 true

● Note, that the j++ on the line containing the || operator is not
evaluated since the first expression (i<10) is already equal
to true.

Logical Operators: || (logical) and
| (boolean logical) inclusive OR

Introduction to Programming 1 83

Logical Operators: ^ (boolean
logical exclusive OR)

● Here is the truth table for ^,

● The result of an exclusive OR operation is TRUE, if and only
if one operand is true and the other is false.

● Note that both operands must always be evaluated in order
to calculate the result of an exclusive OR.

Introduction to Programming 1 84

Logical Operators: ^ (boolean
logical exclusive OR)

1 public class TestXOR {
2 public static void main(String[] args){
3 boolean val1 = true;
4 boolean val2 = true;
5 System.out.println(val1 ^ val2);
6 val1 = false; val2 = true;
7 System.out.println(val1 ^ val2);
8 val1 = false; val2 = false;
9 System.out.println(val1 ^ val2);
10 val1 = true; val2 = false;
11 System.out.println(val1 ^ val2);
12 }
13 }

Introduction to Programming 1 85

● The output of the program is,
false
true
false
true

Logical Operators: ^ (boolean
logical exclusive OR)

Introduction to Programming 1 86

Logical Operators: ! (logical
NOT)

● The logical NOT takes in one argument, wherein that
argument can be an expression, variable or constant.

● Here is the truth table for !,

Introduction to Programming 1 87

Logical Operators: ! (logical
NOT)

1 public class TestNOT {
2 public static void main(String[] args){
3 boolean val1 = true;
4 boolean val2 = false;
5 System.out.println(!val1);
6 System.out.println(!val2);
7 }
8 }

● The output of the program is,
false
true

Introduction to Programming 1 88

Logical Operators:
Conditional Operator (?:)

● The conditional operator ?:
– is a ternary operator.

● This means that it takes in three arguments that together form a conditional
expression.

– The structure of an expression using a conditional operator is
exp1?exp2:exp3

wherein,
exp1 - is a boolean expression whose result must either be true or false

– Result:
If exp1 is true, exp2 is the value returned.
If it is false, then exp3 is returned.

Introduction to Programming 1 89

Logical Operators:
Conditional Operator (?:)

1 public class ConditionalOperator {
2 public static void main(String[] args){
3 String status = "";
4 int grade = 80;
5 //get status of the student
6 status = (grade >= 60)?"Passed":"Fail";
7 //print status
8 System.out.println(status);
9 }
10 }

● The output of this program will be,
Passed

Introduction to Programming 1 90

Logical Operators:
Conditional Operator (?:)

Introduction to Programming 1 91

Operator Precedence

Introduction to Programming 1 92

Operator Precedence
● Given a complicated expression,

6%2*5+4/2+88-10

we can re-write the expression and place some parenthesis
base on operator precedence,

((6%2)*5)+(4/2)+88-10;

Introduction to Programming 1 93

Operator Precedence:
Coding Guidelines

● To avoid confusion in evaluating mathematical operations,
keep your expressions simple and use parentheses.

Introduction to Programming 1 94

Summary
● Java Comments (C++-Style Comments, C-Style Comments,

Special Javadoc Comments)
● Java statements, blocks, identifiers, keywords
● Java Literals (integer, floating point, boolean, character,

String)
● Primitive data types(boolean, char, byte, short, int, long,

float, double)

Introduction to Programming 1 95

Summary
● Variables (declare, initialize, output)
● System.out.println() vs. System.out.print()
● Reference Variables vs. Primitive Variables
● Operators (Arithmetic operators, Increment and Decrement

operators, Relational operators, Logical operators,
Conditional Operator (?:), Operator Precedence)

