Lecture 8. Basic Concepts of Graph Theory

Definition

The undirected graph (or shortly graph) is a pair:

$$
G=\langle V, E\rangle
$$

where V is a nonempty set (a set of vertices of G) and $E=\{\{u, v\}: u, v \in V\}$ is a set of edges G.

Example

Consider the undirected graph $G=\langle V, E\rangle$, where $V=\{a, b, c, d, e\}$,
$E=\{\{a, b\},\{a, c\},\{a, e\},\{e, b\},\{d, b\},\{c, d\},\{d, e\}\}$.

We usually use a graphical representation of the graph. The vertices are represented by points and the edges by lines connecting the points.

Undirected and Directed Graphs

Example

Consider schools of languages $S H=\{y e s$, ok, maybe, ling $\}$ and students $S=\{$ Ania, Ela, Tomek, Edek $\}$ the set of potential students. Every student is interested in some schools $S H_{i} \subset S H$. The situation can be easily modelled by the graph $G=\langle S H \cup S, E\rangle$.

Remark

Let $m=\{p, q\} \in E$. This means that the edge m connects the vertex p and the vertex q. Moreover, in such a case p and q are called the endpoints of m and we say, that p and q are incident with m and p and q are adjacent or neighbours of each other.

In many applications we use a spacial types of edges: multiedges and loops.

Definition

Multiedges are edges which connect the same pair of vertices and a loop connects the vertex with itself. A graph with multiedges and loops are called multigraph.

In this picture edges m and I are multiedges and d and b are loops.

Undirected and Directed Graphs

Often, we associate weights to edges of the graph. These weights can represent cost, profit or loss, length, capacity etc. of given connection.

Definition

The weight is a mapping from the set of edges to the set of real numbers $w: E \rightarrow \mathbb{R}$. The graph with weight function is called the network and denoted by $G=\langle V, E, w\rangle$.

Undirected and Directed Graphs

Example

Let us consider the graph $G=\langle V, E, w\rangle$, where $V=\{a, b, c, d, e\}$,
$E=\{\{a, b\},\{a, c\},\{a, e\},\{e, b\},\{d, b\},\{c, d\},\{d, e\}\}$ and the weight function

edge $e \in E$	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{a}, \mathrm{c}\}$	$\{\mathrm{a}, \mathrm{e}\}$	$\{\mathrm{d}, \mathrm{b}\}$	$\{\mathrm{e}, \mathrm{b}\}$	$\{\mathrm{d}, \mathrm{e}\}$	$\{\mathrm{d}, \mathrm{c}\}$
weight $w(e)$	-9	3	6	0	12	8	0.7

Undirected and Directed Graphs

Example

Consider cities Łódź, Warszawa, Konin, Sieradz, Kalisz and road connections between them. Suppose that between any cities there is a direct connection. If the edge is a direct connection, and the weight is the distance, then we obtain the following graph.

Undirected and Directed Graphs

Definition

A directed graph (digraph) is a pair:

$$
G=\langle V, E\rangle
$$

where V is a nonempty set of vertices and $E=\{(u, v): u, v \in V\}$ is a set of directed edges. In digraphs, E is collection of ordered pairs. If $(p, q) \in E, p$ is the head of edge and q is the tail of edge.

Undirected and Directed Graphs

Example

Consider the directed graph $G=\langle V, E\rangle$, where $V=\{a, b, c, d, e\}$, $E=\{(a, b),(a, c),(a, e),(b, e),(b, d),(c, d),(d, e)\}$.

Undirected and Directed Graphs

In the graph theory we can also consider the digraph $\langle V, E, w\rangle$ with the weight function.

Example

A dispatcher for a cab company can communicate in two ways with each cab and one way with a customer. A digraph of this communication model might look as follows.

Definition

The degree of the vertex v is the number of edges incident to the vertex, with loops counted twice. The degree of a vertex is denoted $\operatorname{deg}(v)$. A vertex v with degree 0 is called an isolated vertex, a vertex with degree 1 is called an endvertex, a hanging vertex, or a leaf.

Definition

The degree of the graph $G, \Delta(G)$ is the maximum degree of graph G

$$
\Delta(G)=\max _{v \in V} \operatorname{deg}(v)
$$

Example

Consider the graph

then
(1) isolated vertices are x_{5} and x_{7},
(2) the endvertices are x_{4} and x_{6},
(3) $\operatorname{deg}\left(x_{1}\right)=2$ and $\operatorname{deg}\left(x_{2}\right)=5, \operatorname{deg}\left(x_{3}\right)=4$ and $\operatorname{deg}\left(x_{8}\right)=3$
(4) degree of graph $\Delta(G)=5$.

Definition

The indegree of a vertex v degin (v), is the number of head endpoints adjacent to v. The outdegree of a vertex v degout (v), is the number of tail endpoints adjacent from v. The degree of a vertex $\operatorname{deg}(v)$ in digraph is equal

$$
\operatorname{deg}(v)=\operatorname{degout}(v)+\operatorname{degin}(v)
$$

Example

Consider the digraph

$$
\begin{array}{ll}
\operatorname{degout}(x)=3, & \operatorname{degin}(x)=2 \\
\operatorname{degout}(u)=2, & \operatorname{degin}(u)=1 \\
\operatorname{degout}(z)=4, & \operatorname{degin}(z)=1, \\
\operatorname{degout}(w)=1, & \operatorname{degin}(w)=2 \\
\operatorname{degout}(y)=1, & \operatorname{degin}(y)=5
\end{array}
$$

Definition

A vertex v for which $\operatorname{degin}(v)=0$ and $\operatorname{degout}(v)>0$ is called a source and a vertex v for which $\operatorname{degout}(v)=0$ and $\operatorname{degin}(v)>0$ is called a sink.

Basic Properties of Graphs

Example

Consider the digraph

We have the following degrees of vertices

$$
\begin{aligned}
& \operatorname{deg}(a)=\operatorname{degout}(a)+\operatorname{degin}(a)=1+0=1 \\
& \operatorname{deg}(b)=\operatorname{degout}(b)+\operatorname{degin}(b)=1+2=3 \\
& \operatorname{deg}(c)=\operatorname{degout}(c)+\operatorname{degin}(c)=2+0=2 \\
& \operatorname{deg}(d)=\operatorname{degout}(d)+\operatorname{degin}(d)=1+1=2 \\
& \operatorname{deg}(e)=\operatorname{degout}(e)+\operatorname{degin}(e)=0+2=2
\end{aligned}
$$

The degree of digraph

$$
\Delta(G)=\max _{u \in V} \operatorname{deg}(u)=3
$$

Sources in digraph are vertices a and c. The sink is the vertex e.

Theorem

For any graph we have

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Theorem

The number of vertices of odd degree is even.

Definition

A path in a graph (digraph or multigraph) is a sequence of edges which connect a sequence of vertices. To be more specific, a sequence $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is called a path of the length n if there are vertices v_{0}, \ldots, v_{n} such that $e_{i}=\left\{v_{i-1}, v_{i}\right\}$ (or $\left.e_{i}=\left(v_{i-1}, v_{i}\right)\right), i=1, \ldots, n$. The first vertex v_{1} of the path, is called its start vertex, and the last vertex v_{n}, is called its end vertex. Both of them are called terminal vertices of the path. The other vertices in the path are internal vertices. If $v_{0}=v_{n}$ then, the sequence is called a closed path. A closed path for which the edges and vertices are distinct (except the start and the end vertices) is called a cycle.

Example

Consider the graph

- the path (d, e, g, b, a) is closed path,
- the path (d, g, b, a) is cycle.

Paths and Cycles

Definition

A graph without cycles is called acyclic.

Definition

A graph is called connected if for any two vertices u and v there exists a path connecting u and v, i.e. with start vertex u and end vertex v.

Definition

A connected and acyclic graph is called a tree.

Definition

The complete graph K_{n} is the graph with n vertices and all the pairs of vertices are adjacent to each other.

Theorem

In any $K_{n}, \operatorname{deg}(v)=n-1$. The number of edges of any complete graph K_{n} is

$$
\left|E_{K_{n}}\right|=\frac{n(n-1)}{2}
$$

Paths and Cycles

Definition

A graph $H=\left\langle V_{H}, E_{H}\right\rangle$ is called a subgraph of $G=\left\langle V_{G}, E_{G}\right\rangle$ when $V_{H} \subset V_{G}$ and $E_{H} \subset E_{G}$.

Example

Consider graphs

G_{1} and G_{2} are subgraphs of G

$$
G_{1} \subset G, G_{2} \subset G
$$

Thank you for your attention!

