Lecture 8. Basic Concepts of Graph Theory

The undirected graph (or shortly graph) is a pair:

$$G = \langle V, E \rangle$$

where V is a nonempty set (a set of vertices of G) and $E = \{\{u, v\} : u, v \in V\}$ is a set of edges G.

Example

Consider the undirected graph
$$G = \langle V, E \rangle$$
, where $V = \{a, b, c, d, e\}$, $E = \{\{a, b\}, \{a, c\}, \{a, e\}, \{e, b\}, \{d, b\}, \{c, d\}, \{d, e\}\}$.

We usually use a graphical representation of the graph. The vertices are represented by points and the edges by lines connecting the points.

(ロ)、<部>、<国>、<国>、<国>、<</p>

Undirected and Directed Graphs

Example

Consider schools of languages $SH = \{\text{yes, ok, maybe, ling}\}$ and students $S = \{\text{Ania, Ela, Tomek, Edek}\}$ the set of potential students. Every student is interested in some schools $SH_i \subset SH$. The situation can be easily modelled by the graph $G = \langle SH \cup S, E \rangle$.

Remark

Let $m = \{p, q\} \in E$. This means that the edge m connects the vertex p and the vertex q. Moreover, in such a case p and q are called the endpoints of m and we say, that p and q are incident with m and p and q are adjacent or neighbours of each other.

In many applications we use a spacial types of edges: multiedges and loops.

Definition

Multiedges are edges which connect the same pair of vertices and a **loop** connects the vertex with itself. A graph with multiedges and loops are called **multigraph**.

In this picture edges m and l are multiedges and d and b are loops.

Often, we associate weights to edges of the graph. These weights can represent cost, profit or loss, length, capacity etc. of given connection.

Definition

The weight is a mapping from the set of edges to the set of real numbers $w: E \to \mathbb{R}$. The graph with weight function is called the **network** and denoted by $G = \langle V, E, w \rangle$.

Example

Let us consider the graph $G = \langle V, E, w \rangle$, where $V = \{a, b, c, d, e\}$, $E = \{\{a, b\}, \{a, c\}, \{a, e\}, \{e, b\}, \{d, b\}, \{c, d\}, \{d, e\}\}$ and the weight function

edge $e \in E$	a,b	a,c	$\{a,e\}$	{d,b}	{e,b}	{d,e}	{d,c}
weight $w(e)$	-9	3	6	0	12	8	0.7

Undirected and Directed Graphs

Example

Consider cities Łódź, Warszawa, Konin, Sieradz, Kalisz and road connections between them. Suppose that between any cities there is a direct connection. If the edge is a direct connection, and the weight is the distance, then we obtain the following graph.

A directed graph (digraph) is a pair:

 $G = \langle V, E \rangle$

where V is a nonempty set of vertices and $E = \{(u, v) : u, v \in V\}$ is a set of directed edges. In digraphs, E is collection of ordered pairs. If $(p, q) \in E$, p is the **head** of edge and q is the **tail** of edge.

Example

Consider the directed graph $G = \langle V, E \rangle$, where $V = \{a, b, c, d, e\}$, $E = \{(a, b), (a, c), (a, e), (b, e), (b, d), (c, d), (d, e)\}$.

(日) (四) (注) (注) (注) (注)

11/27

Undirected and Directed Graphs

In the graph theory we can also consider the digraph $\langle V, E, w \rangle$ with the weight function.

Example

A dispatcher for a cab company can communicate in two ways with each cab and one way with a customer. A digraph of this communication model might look as follows.

・ロト ・日子・・ヨト ・ヨト

The degree of the vertex v is the number of edges incident to the vertex, with loops counted twice. The degree of a vertex is denoted deg(v). A vertex v with degree 0 is called an isolated vertex, a vertex with degree 1 is called an endvertex, a hanging vertex, or a leaf.

Definition

The degree of the graph G, $\Delta(G)$ is the maximum degree of graph G

 $\Delta(G) = \max_{v \in V} \deg(v).$

(ロ) (部) (主) (主) (主)

13/27

Basic Properties of Graphs

Example

Consider the graph

then

- **()** isolated vertices are x_5 and x_7 ,
- 2 the endvertices are x_4 and x_6 ,

3 deg
$$(x_1) = 2$$
 and deg $(x_2) = 5$, deg $(x_3) = 4$ and deg $(x_8) = 3$

• degree of graph $\Delta(G) = 5$.

The **indegree** of a vertex $v \ degin(v)$, is the number of head endpoints adjacent to v. The **outdegree** of a vertex $v \ degout(v)$, is the number of tail endpoints adjacent from v. The **degree** of a vertex deg(v) in digraph is equal

deg(v) = degout(v) + degin(v)

Basic Properties of Graphs

Example

Consider the digraph

A vertex v for which degin(v) = 0 and degout(v) > 0 is called a **source** and a vertex v for which degout(v) = 0 and degin(v) > 0 is called a **sink**.

Basic Properties of Graphs

Example

Consider the digraph

We have the following degrees of vertices

$$deg(a) = degout(a) + degin(a) = 1 + 0 = 1$$

$$deg(b) = degout(b) + degin(b) = 1 + 2 = 3$$

$$deg(c) = degout(c) + degin(c) = 2 + 0 = 2$$

$$deg(d) = degout(d) + degin(d) = 1 + 1 = 2$$

$$deg(e) = degout(e) + degin(e) = 0 + 2 = 2$$

The degree of digraph

$$\Delta(G) = \max_{u \in V} deg(u) = 3$$

Basic Properties of Graphs

< □ > < □ > < □ > < 臣 > < 臣 > 差 ≥ 3 臣 べ 19/27

Theorem

For any graph we have

$$\sum_{v \in V} \deg(v) = 2|E|$$

Theorem

The number of vertices of odd degree is even.

A path in a graph (digraph or multigraph) is a sequence of edges which connect a sequence of vertices. To be more specific, a sequence (e_1, e_2, \ldots, e_n) is called a path of the length *n* if there are vertices v_0, \ldots, v_n such that $e_i = \{v_{i-1}, v_i\}$ (or $e_i = (v_{i-1}, v_i)$), $i = 1, \ldots, n$. The first vertex v_1 of the path, is called its start vertex, and the last vertex v_n , is called its end vertex. Both of them are called terminal vertices of the path. The other vertices in the path are internal vertices. If $v_0 = v_n$ then, the sequence is called a closed path. A closed path for which the edges and vertices are distinct (except the start and the end vertices) is called a cycle.

Basic Properties of Graphs

Example

Consider the graph

イロト イヨト イヨト イヨト

22/27

• the path (d, e, g, b, a) is closed path,

• the path (d, g, b, a) is cycle.

A graph without cycles is called acyclic.

Definition

A graph is called **connected** if for any two vertices u and v there exists a path connecting u and v, i.e. with start vertex u and end vertex v.

A connected and acyclic graph is called a tree.

The **complete graph** K_n is the graph with *n* vertices and all the pairs of vertices are adjacent to each other.

Theorem

In any K_n , deg(v) = n - 1. The number of edges of any complete graph K_n is

$$|E_{\mathcal{K}_n}|=\frac{n(n-1)}{2}.$$

< □ > < @ > < 볼 > < 볼 > 볼 > 25 / 27

Paths and Cycles

Definition

A graph $H = \langle V_H, E_H \rangle$ is called a **subgraph** of $G = \langle V_G, E_G \rangle$ when $V_H \subset V_G$ and $E_H \subset E_G$.

Example

Consider graphs

 G_1 and G_2 are subgraphs of G

 ${\it G}_1 \subset {\it G}, \ {\it G}_2 \subset {\it G}$

Thank you for your attention!