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SOLID MATERIALS

CRYSTALLINE

Single Crystal

POLYCRYSTALLINE
AMORPHOUS

(Non-crystalline)

 Solid Materials
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A) Crystalline Solid

 Crystalline Solid is the solid form of a substance in which the

atoms or molecules are arranged in a definite, repeating pattern

in three dimension.

 Single crystals, ideally have a high degree of order, or regular

geometric periodicity, throughout the entire volume of the

material.

Single Pyrite

Crystal

Amorphous

Solid
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 Polycrystal is a material made up of an aggregate of many small single crystals (also called

crystallites or grains).

 Polycrystalline material have a high degree of order over many atomic or molecular

dimensions.

 These ordered regions, or single crytal regions, vary in size and orientation wrt one

another.

 These regions are called as grains ( domain) and are separated from one another by grain

boundaries.The atomic order can vary from one domain to the next.

 The grains are usually 100 nm - 100 microns in diameter. Polycrystals with grains that are

<10 nm in diameter are called nanocrystalline

Polycrystalline

Pyrite  form

(Grain)

B) Polycrystalline Solid
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 Amorphous (Non-crystalline) Solid is composed of randomly orientated
atoms , ions, or molecules that do not form defined patterns or lattice
structures.

 Amorphous materials have order only within a few atomic or molecular
dimensions.

 Amorphous materials do not have any long-range order, but they have varying
degrees of short-range order.

 Examples to amorphous materials include amorphous silicon, plastics, and
glasses.

 Amorphous silicon can be used in solar cells and thin film transistors.

C) Amorphous Solid



ATOMIC ARRANGEMENT IN CRYSTALS

(a) mono (or) single crystals

(b) polycrystalline solids 

(c) amorphous solids



 Perfect Crystal

 Strictly speaking, one cannot prepare a perfect crystal. For example, even the
surface of a crystal is a kind of imperfection because the periodicity is
interrupted there.

 Another example concerns the thermal vibrations of the atoms around their
equilibrium positions for any temperatureT>0°K.

 As a third example, actual crystal

always contains some foreign atoms,

i.e., impurities. These impurities

spoils the perfect crystal structure.



 The periodic array of atoms, ions, or molecules that form the solid is 

called Crystal Structure

Crystal Structure = Space (Crystal) Lattice + Basis

 Space (Crystal) Lattice is a regular periodic arrangement of points

in space, and is purely mathematical abstraction

 Crystal Structure is formed by “putting” the identical atoms (group 

of atoms) in the points of the space lattice

 This group of atoms is the Basis

 Crystals



2 Dimensional Example





 Crystal Lattice

Mathematically,

A Lattice is defined as an 

Infinite Array of Points in Space 

in which Each point has 

identical surroundings

To all others.

The points are arranged 

exactly in a Periodic manner.
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• The structure of an Ideal Crystal can be described in terms of a 

mathematical construction called a Lattice.

A Lattice ≡

• A 3-dimensional periodic array of points in space. For a particular solid, 

the smallest structural unit, which when repeated for every point in the 

lattice is called the Basis.

• The Crystal Structure is defined once both the lattice & the basis are 

specified. That is

Crystal Structure ≡ Lattice + Basis



Crystal Lattice

Bravais Lattice (BL)

§ All atoms are of the same kind
§ All lattice points are equivalent

Non-Bravais Lattice (non-BL)

§ Atoms can be of different kind
§ Some lattice points are not

equivalent
§A combination of two or more BL

 A crystal lattice can be divided in to two categories,



A lattice is a regular and periodic
arrangement of points in three 
dimension.

It is defined as an infinite array of 
points in three dimension in 
every point has surroundings identical to 
that of every other point in the array. 

The Space lattice is otherwise called 
the Crystal lattice

 Space Lattice

Two Dimentional Space

Lattice



A crystal structure is formed by associating every   

lattice point with an unit assembly of atoms or  

molecules identical in composition, arrangement and  

orientation. 

This unit assembly is called the `basis’.

When the basis is repeated with correct periodicity in 

all directions, it gives the actual crystal structure. 

The crystal structure is real, while the lattice is 

imaginary.

 Basis



= +

Crystal structure    =  Lattice              +   Basis

 Crystal Structure



Crystal Structure = Space Lattice + Basis

 Crystals



 In a crystalline material, the equilibrium positions of all the atoms 

form a crystal

Crystal Structure ≡ Lattice + Basis
For example, see Fig.

2 Atom Basis 

Lattice 

Crystal 

Structure

 Crystalline Periodicity



Crystal Structure ≡ Lattice + Basis

For another example, see the figure.

Lattice

 Basis



Crystal Structure



 Crystalline Periodicity
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Lattice with atoms at the corners of regular hexagons

2-Dimensional Lattice
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Crystal Structure = Lattice  + Basis

Basis



Crystal

Structure


 The atoms do not necessarily lie at lattice points!!!



•The simplest repeating unit in a 

crystal is called a unit cell. 

•Opposite faces of a unit cell are 

parallel.

•The edge of the unit cell connects 

equivalent points.

•Not unique. There can be several unit 

cells of a crystal.

•The smallest possible unit cell is called 

primitive unit cell of a particular 

crystal structure. 

 Unit Cell



•  Rare due to poor packing (only Po has this structure)

•  Close-packed directions are cube edges.

Coordination # = 6

(# nearest neighbors)
1 atom/unit cell

(1-a): Simple Cubic Structure (SC)

 Crystal Structure for Metallic
Elements



One atom per unit cell

1/8 x 8 = 1



•  Exhibited by Al, Cu, Au, Ag, Ni, Pt

• Close packed directions are face diagonals.

• Coordination number = 12

• 4 atoms/unit cell

6 x (1/2 face)  + 8 x 1/8 (corner) = 4 atoms/unit cell

(1-b): Face Centered Cubic Structure (FCC)

All atoms are identical

FCC

Coordination number = 12

3 mutually perpendicular planes.

4 nearest neighbors on each of the

three planes.



•  Exhibited by Cr, Fe, Mo, Ta, W

• Close packed directions are cube diagonals.

• Coordination number = 8

2 atoms/unit cell

(1-c): Body Centered Cubic Structure (BCC)

All atoms are identical



Which one has most packing ?



Which one has most packing ?

For that reason, FCC is also referred to as cubic 

closed packed (CCP)



• Exhibited by ….  

• ABAB... Stacking Sequence

• Coordination # = 12

3D Projection

2D Projection

A sites

B sites

A sites

Hexagonal Closed Packed Structure (HCP)

http://www.wiley.com/college/callister/0471470147/gallery/ch03/pages/Fig03_31.html
http://www.wiley.com/college/callister/0471470147/gallery/ch03/pages/Fig03_31.html


A sites

B sites

A sites

HCP

FCC

Layer Stacking Sequence

= ABCABC..

= ABAB…

http://www.wiley.com/college/callister/0471470147/gallery/ch03/pages/Fig03_31.html
http://www.wiley.com/college/callister/0471470147/gallery/ch03/pages/Fig03_31.html


Atomic Packing Factor (APF) is defined as the volume of atoms within the

unit cell divided by the volume of the unit cell.

 Atomic Packing Factor

APF = 
Volume of atoms in unit cell*

Volume of unit cell
(assume hard spheres)

•  APF for a simple cubic structure = 0.52

APF = 

a 3

4

3
p (0.5a) 31

atoms

unit cell

atom

volume

unit cell

volume

Adapted from Fig. 3.23,

Callister 7e.

close-packed directions

a

R=0.5a

contains (8 x 1/8) = 
1 atom/unit cell Here: a = Rat*2

Where Rat is the ‘handbook’ atomic radius



•  Coordination # = 8

•  Atoms touch each other along cube diagonals within a unit cell.

A] Body Centered Cubic Structure (BCC)

ex: Cr, W, Fe (), Tantalum, Molybdenum

2 atoms/unit cell:  (1 center) + (8 corners x 1/8)

Note:  All atoms are identical; the center atom is shaded differently only for ease of viewing.



Atomic Packing Factor:  BCC

a

APF = 

4

3
p ( 3 a/4)32

atoms

unit cell atom

volume

a 3

unit cell

volume

length = 4R =

Close-packed directions:

3 a

•  APF for a body-centered cubic structure = 0.68

a
R

a2

a3



Coordination # = 12

• Atoms touch each other along face diagonals.
Note:  All atoms are identical; the face-centered atoms are shaded differently only for ease of 

viewing.

B] Face Centered Cubic Structure (FCC)

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

4 atoms/unit cell: (6 face x ½) + (8 corners x 1/8)



•  APF for a face-centered cubic structure = 0.74

Atomic Packing Factor:  FCC

The maximum achievable APF!

APF = 

4

3
p ( 2 a/4)34

atoms

unit cell atom

volume

a 3

unit cell

volume

Close-packed directions: 

length = 4R = 2 a

Unit cell contains:

6 x 1/2 + 8 x1/8  

= 4 atoms/unit cell
a

2 a
(a = 22*R)



•  Coordination # = 12

•  ABAB... Stacking Sequence

•  APF = 0.74

•  3D Projection
•  2D Projection

C] Hexagonal Close-Packed Structure (HCP)

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

• c/a = 1.633 (ideal)

c

a

A sites

B sites

A sites
Bottom layer

Middle layer

Top layer



We find that both FCC & HCP are highest density packing schemes (APF

= .74) – this illustration shows their differences as the closest packed

planes are “built-up”



Crystal Structure36



Where, n = number of atoms/unit cell

A = atomic weight 

VC = Volume of unit cell = a3 for cubic

NA = Avogadro’s number 

= 6.023 x 1023 atoms/mol

Density =   =

VCNA

n A
 =

CellUnitofVolumeTotal

CellUnitinAtomsofMass

 Theoretical Density, 



Theoretical Density, 

• Ex: Cr (BCC)  

A = 52.00 g/mol

R = 0.125 nm

n = 2

 a = 4R/3 = 0.2887 nm   

a
R

 = 
a 3

52.002

atoms

unit cell
mol

g

unit cell

volume atoms

mol

6.023 x1023

theoretical

actual

= 7.18 g/cm3

= 7.19 g/cm3



 Crystals, and therefore minerals, have an ordered internal arrangement of
atoms.

 This ordered arrangement shows symmetry, i.e. the atoms are arranged in
a symmetrical fashion on a three dimensional network referred to as a
lattice.

 When a crystal forms in an environment where there are no impediments
to its growth, crystal faces form as smooth planar boundaries that make up
the surface of the crystal.

 These crystal faces reflect the ordered internal arrangement of atoms and
thus reflect the symmetry of the crystal lattice.

 Crystal Symmetry



 To see this, imagine a small 2 dimensional crystal composed of atoms in an

ordered internal arrangement as shown below.

 Although all of the atoms in this lattice are the same, one of them is gray so

that its position can be tracked.

 If we rotate the simple crystals by 90o notice that the lattice and crystal

look exactly the same as what we started with.

 Rotate it another 90o and again its the same. Another 90o rotation again

results in an identical crystal, and another 90o rotation returns the crystal

to its original orientation.

 Thus, in 1 360o rotation, the crystal has repeated itself, or looks identical 4

times. We thus say that this object has 4-fold rotational symmetry.

Crystal Symmetry



 There are four elements of symmetry for a crystal.

 These include :

A] Axes of symmetry

B] Plane of symmetry

C] Center of symmetry

 These symmetry elements may be or may not be combined in the same

crystal. Indeed, we will find that one crystal class or system has only one

of these elements.

Crystal Symmetry



A] Axes of Symmetry/Rotational Symmetry

 If an object can be rotated about an axis and repeats itself every 90o of 

rotation then it is said to have an axis of 4-fold rotational symmetry.

 The axis along which the rotation is performed is an element of 

symmetry referred to as a rotation axis.



 When rotation repeats form every 60 degrees, then we have sixfold or

HEXAGONAL SYMMETRY. A filled hexagon symbol is noted on the rotational

axis.

 When rotation repeats form every 90 degrees, then we have fourfold or

TETRAGONAL SYMMETRY. A filled square is noted on the rotational axis.

 When rotation repeats form every 120 degrees, then we have threefold or

TRIGONAL SYMMETRY. A filled equilateral triangle is noted on the rotational

axis.

 When rotation repeats form every 180 degrees, then we have twofold or BINARY

SYMMETRY. A filled oval is noted on the rotational axis.

 When rotation repeats form every 360 degrees, then we use a filled circle as notation.

This one I consider optional to list as almost any object has this symmetry. If you really

want to know the truth, this means NO SYMMETRY!

Axes of Symmetry/Rotational Symmetry

 When rotation repeats form every 60 degrees, then we have sixfold or

HEXAGONAL SYMMETRY. A filled hexagon symbol is noted on the rotational

axis.

 When rotation repeats form every 90 degrees, then we have fourfold or

TETRAGONAL SYMMETRY. A filled square is noted on the rotational axis.

 When rotation repeats form every 120 degrees, then we have threefold or

TRIGONAL SYMMETRY. A filled equilateral triangle is noted on the rotational

axis.

 When rotation repeats form every 180 degrees, then we have twofold or BINARY

SYMMETRY. A filled oval is noted on the rotational axis.

 When rotation repeats form every 360 degrees, then we use a filled circle as notation.

This one I consider optional to list as almost any object has this symmetry. If you really

want to know the truth, this means NO SYMMETRY!



 The following types of rotational symmetry axes are possible in crystals.

 1-Fold Rotation Axis - An object that requires rotation of a full 360o in

order to restore it to its original appearance has no rotational symmetry.

 Since it repeats itself 1 time every 360o it is said to have a 1-fold axis of

rotational symmetry.

Axes of Symmetry/Rotational Symmetry



 2-fold Rotation Axis - If an object appears identical after a rotation of

180o, that is twice in a 360o rotation, then it is said to have a 2-fold

rotation axis (360/180 = 2).

 Note that in these examples the axes we are referring to are imaginary

lines that extend toward you perpendicular to the page or blackboard.

 A filled oval shape represents the point where the 2-fold rotation axis

intersects the page.

Axes of Symmetry/Rotational Symmetry



 3-Fold Rotation Axis- Objects that repeat

themselves upon rotation of 120o are said to have a

3-fold axis of rotational symmetry (360/120 =3),

and they will repeat 3 times in a 360o rotation.

 A filled triangle is used to symbolize the location of

3-fold rotation axis.

 4-Fold Rotation Axis - If an object repeats itself

after 90o of rotation, it will repeat 4 times in a

360o rotation, as illustrated previously.

 A filled square is used to symbolize the location of

4-fold axis of rotational symmetry.

Axes of Symmetry/Rotational Symmetry



 6-Fold Rotation Axis - If rotation of 60o about an axis causes the

object to repeat itself, then it has 6-fold axis of rotational

symmetry (360/60=6).

 A filled hexagon is used as the symbol for a 6-fold rotation axis.

Axes of Symmetry/Rotational Symmetry



 Any two dimensional surface that, when passed through the center of the crystal, divides it

into two symmetrical parts that are MIRROR IMAGES is a PLANE OF SYMMETRY.

 A mirror symmetry operation is an imaginary operation that can be performed to

reproduce an object.

 The operation is done by imagining that you cut the object in half, then place a mirror

next to one of the halves of the object along the cut.

 If the reflection in the mirror reproduces the other half of the object, then the object is

said to have mirror symmetry.

 The plane of the mirror is an element of symmetry referred to as a mirror plane, and is

symbolized with the letter m.

 As an example, the human body is an object that approximates mirror symmetry,

B] Plane of Symmetry/Reflection Symmetry/ 

Mirror Symmetry



Plane of Symmetry for the crystals in cubic system

Plane of Symmetry/Reflection Symmetry/ Mirror 

Symmetry



 The rectangles shown here have two
planes of mirror symmetry.

 The rectangle on the left has a mirror
plane that runs vertically on the page
and is perpendicular to the page.

 The rectangle on the right has a mirror
plane that runs horizontally and is
perpendicular to the page.

 The dashed parts of the rectangles
below show the part the rectangles that
would be seen as a reflection in the
mirror

Plane of Symmetry/Reflection Symmetry/ Mirror 

Symmetry



 Most crystals have a center of symmetry, even though
they may not possess either planes of symmetry or axes of
symmetry.

 If you can pass an imaginary line from the surface of a crystal
face through the center of the crystal (the axial cross) and it
intersects a similar point on a face equidistance from the
center, then the crystal has a center of symmetry.

 In this operation lines are drawn from all points on the
object through a point in the center of the object, called a
symmetry center (symbolized with the letter "i").

 The lines each have lengths that are equidistant from the
original points.

 When the ends of the lines are connected, the original
object is reproduced inverted from its original appearance.

C] Center of Symmetry/Inversion Symmetry



•The crystal system: Set of rotation and reflection symmetries which leave 

a lattice point fixed. 

•There are seven unique crystal systems: the cubic (isometric), hexagonal, 

tetragonal, rhombohedral (trigonal), orthorhombic, monoclinic and triclinic.

 Crystal System

 Bravais Lattice and Crystal System

Crystal structure: contains atoms at every lattice point.

•The symmetry of the crystal can be more complicated than the symmetry of 

the lattice.

•Bravais lattice points do not necessarily correspond to real atomic sites in a 

crystal. A Bravais lattice point may be used to represent a group of many 

atoms of a real crystal. This means more ways of arranging atoms in a crystal 

lattice.





1. Cubic (Isometric) System

Symmetry elements: Four 3-fold 

rotation axes along cube diagonals

a = b = c

 =  =  = 90o

3 Bravais lattices

a
b

c




•This is also known as the isometric crystal system

•The cubic (Isometric) crystal system is characterized by its total symmetry

•The Cubic system has three crystallographic axes that are all perpendicular to each

other, and equal in length.

•The three crystallographic axes a1, a2, a3 (or a, b, c) are all equal in length and intersect

at right angles (90 degrees) to each other.



Symmetry element: One 6-fold rotation axis

a = b  c

= 120o

 =  = 90o

2. Hexagonal System

Only one Bravais lattice

•The hexagonal crystal system has four crystallographic

axes consisting of three equal horizontal or equatorial

(a, b, and d) axes at 120°, and one vertical (c) axis that is

perpendicular to the other three.

•The (c) axis can be shorter, or longer than the horizontal

axes.



Symmetry element: One 4-fold rotation axis

a = b  c

=  =  = 90o

3. Tetragonal System

Two Bravais lattices

•A tetragonal crystal is a simple cubic shape that is stretched along its (c) axis to form a 

rectangular prism. 

•The tetragonal crystal will have a square base and top, but a height which is taller. 

•Three axes, all at right angles, two of which are equal in length (a and b) and one (c) which is 

different in length (Shorter or  Longer) 

Note: If c was equal in length to a or b, then we would be in the cubic system!



Symmetry element: One 3-fold rotation axis

a = b  c

= 120o

 =  = 90o

4. Trigonal (Rhombohedral) System

One Bravais lattice

•A rhombohedron has a three-dimensional shape that is similar to a cube,
but it has been skewed or inclined to one side making it oblique.
• It is also known as theTrigonal crystal system.
•A rhombohedral crystal has six faces, 12 edges, and 8 vertices.
• If all of the non-obtuse internal angles of the faces are equal (flat sample,
below), it can be called a trigonal-trapezohedron



5. Orthorhombic System

Symmetry element: Three mutually perpendicular 2-fold rotation axes

a  b  c

 =  =  = 90o

Four Bravais lattices

• Minerals that form in the orthorhombic (aka rhombic) crystal system have three

mutually perpendicular axes, all with different, or unequal lengths.

• The orthorhombic crystal system is also known as Rhombic crystal system

• Three axes, all at right angles, and all three of different lengths.

• Note: If any axis was of equal length to any other, then we would be in the

tetragonal system!



6. Monoclinic System

Symmetry element: One 2-fold rotation axis

a  b  c

 =  = 90o,   90o

Two Bravais lattices

• Crystals that form in the monoclinic system have three unequal axes.

• The (a) and (c) crystallographic axes are inclined toward each other at an oblique angle,

and the (b) axis is perpendicular to a and c.

• The (b) crystallographic axis is called the "ortho" axis.

Note: If a and c crossed at 90 degrees, then we would be in the orthorhombic system!



7. Triclinic System

Symmetry element: None

a  b  c

      90o

One Bravais lattice

• Crystals that form in the triclinic system have three unequal crystallographic axes, all of

which intersect at oblique angles.

•Triclinic crystals have a 1-fold symmetry axis with virtually no discernible symmetry, and

no mirrored or prismatic planes.

Note: If any two axes crossed at 90 degrees, then we would be describing a monoclinic

crystal!



Miller Indices are a symbolic vector representation for the

orientation of an atomic plane in a crystal lattice and are defined as

the reciprocals of the fractional intercepts which the plane makes

with the crystallographic axes.

To determine Miller indices of a plane, take the following steps;

1) Determine the intercepts of the plane along each of the three 
crystallographic directions

2) Take the reciprocals of the intercepts 

3) If fractions result, multiply each by the denominator of the 
smallest fraction

 Miller Indices 



x         y          z

[1] Draw a vector and take components 0         2a        2a

[2] Reduce to simplest integers 0         1          1

[3] Enclose the number in square 

brackets

[0 1 1]

z

y

x

Miller Indices: Directions



z

y

x

x         y          z

[1] Draw a vector and take components 0         -a        2a

[2] Reduce to simplest integers 0         -1          2

[3] Enclose the number in square brackets

 210

Negative Directions



Equivalent Directions

z

y

x
1

2

3
1: [100]

2: [010]

3: [001]

Equivalent directions due to crystal symmetry:

Notation <100> used to denote all directions equivalent to [100]



The intercepts of a crystal plane with the axis defined by a set of unit 

vectors are at 2a, -3b and 4c. Find the corresponding Miller indices of this 

and all other crystal planes parallel to this plane. 

The Miller indices are obtained in the following three steps:

1. Identify the intersections with the axis, namely 2, -3 and 4.

2. Calculate the inverse of each of those intercepts, resulting in 1/2, -

1/3 and 1/4.

3. Find the smallest integers proportional to the inverse of the 

intercepts. Multiplying each fraction with the product of each of 

the intercepts (24 = 2 x 3 x 4) does result in integers, but not 

always the smallest integers. 

4. These are obtained in this case by multiplying each fraction by 12.

5. Resulting Miller indices is

6. Negative index indicated by a bar on top.

 346



z

y

x

z=

y=

x=a

x               y            z

[1] Determine intercept of plane with each axis a              ∞          ∞

[2] Invert the intercept values 1/a          1/∞        1/∞

[3] Convert to the smallest integers 1              0             0

[4] Enclose the number in round brackets (1 0 0)

Miller Indices of Planes



z

y

x

x               y            z

[1] Determine intercept of plane with 

each axis

2a             2a          2a

[2] Invert the intercept values 1/2a       1/2a 1/2a

[3] Convert to the smallest integers 1              1             1

[4] Enclose the number in round brackets (1 1 1)

Miller Indices of Planes



z

y

x

Planes with Negative Indices

x               y            z

[1] Determine intercept of plane with each axis a              -a          a

[2] Invert the intercept values 1/a         -1/a       1/a

[3] Convert to the smallest integers 1              -1           -1

[4] Enclose the number in round brackets

 111



• Planes (100), (010), (001), (100), (010), (001) are equivalent planes. 

Denoted by {1 0 0}.

• Atomic density and arrangement as well as electrical, optical, physical 

properties are also equivalent.

z

y
x

(100) 

plane

(010) 

plane

(001) plane

Equivalent Planes



In the cubic system the (hkl) plane and the vector [hkl] are normal to one 

another.

This characteristic is unique to the cubic crystal system and does not apply to 

crystal systems of lower symmetry.

The (110) surface

Assignment

Intercepts : a , a , 
Fractional intercepts : 1 , 

1 , ¥ 

Miller Indices : (110)

The (100), (110) and (111) surfaces considered above are the so-called low 

index surfaces of a cubic crystal system (the "low" refers to the Miller indices 

being small numbers - 0 or 1 in this case). 



The (111) surface

Assignment

Intercepts : a , a , a

Fractional intercepts : 1 , 1 , 1 

Miller Indices : (111)

The (210) surface

Assignment

Intercepts : ½ a , a , 

Fractional intercepts : ½ , 1 , 

Miller Indices : (210)



The (111) surface

Assignment

Intercepts : a , a , a

Fractional intercepts : 1 , 1 , 1 

Miller Indices : (111)

The (210) surface

Assignment

Intercepts : ½ a , a , 

Fractional intercepts : ½ , 1 , 

Miller Indices : (210)
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z

x

y

a b

c

4.     Miller Indices      (110)

example a b c
z

x

y

a b

c

4.     Miller Indices      (100)

1.     Intercepts 1         1        

2.     Reciprocals 1/1      1/1     1/

1         1        0
3.     Reduction 1         1        0

1.     Intercepts 1/2        

2.     Reciprocals 1/½     1/ 1/

2        0        0
3.     Reduction 1        0        0

example a b c

Crystallographic Planes
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z

x

y

a b

c






4.     Miller Indices      (634)

example

1.     Intercepts 1/2     1      3/4

a         b        c

2.     Reciprocals 1/½     1/1     1/¾

2 1      4/3

3.     Reduction 6 3        4

(001)(010),

Family of Planes   {hkl}

(100), (010),(001),Ex:   {100} = (100),

Crystallographic Planes





•Four principal axes used, leading to four Miller Indices: 

•Directions [h k i l]; Planes (h k i l), e.g. (0001) surface.

•First three axes/indices are related: h + k + i = 0 or i = -h-k.

•Indices h, k and l are identical to the Miller index.

• Rhombohedral crystal system can also be identified with four indices.

Miller Index for Hexagonal Crystal System



Crystallographic Planes (HCP)
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 In hexagonal unit cells the same idea is used 

example a1 a2 a3   c

4.     Miller-Bravais Indices (1011)

1.     Intercepts 1         -1 1
2.     Reciprocals 1      1/

1        0 

-1

-1

1

1

3.     Reduction 1        0 -1 1
a2

a3

a1

z



Determine the indices for the planes shown in the hexagonal unit 

cells below:
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Determine the indices for the planes shown in the hexagonal unit 

cells below:

79






