
15th Feb 2006

Process management (lower module)

Presented by
C.Namrata Mahender

15th Feb 2006
C.Namrata Mahender

2

Synchronization

• Synchronize: to (arrange events to) happen at
same time

• Process synchronization
• When one process has to wait for another
• Events in processes that occur “at the same time”

• Uses of synchronization
• Prevent race conditions
• Wait for resources to become available

15th Feb 2006
C.Namrata Mahender

3

Synchronization(cont..)

• Concurrent access to shared data may result
in data inconsistency.

• Maintaining data consistency requires
mechanisms to ensure the orderly execution
of cooperating processes

15th Feb 2006
C.Namrata Mahender

4

The Critical-Section Problem

• n processes all competing to use some shared
data

• Each process has a code segment, called
critical section, in which the shared data is
accessed.

• Problem – ensure that when one process is
executing in its critical section, no other
process is allowed to execute in its critical
section.

15th Feb 2006
C.Namrata Mahender

5

Solution to Critical-Section Problem

1. Mutual Exclusion. If process Pi is
executing in its critical section, then no other
processes can be executing in their critical
sections.

2. Progress. If no process is executing in its
critical section and there exist some
processes that wish to enter their critical
section, then the selection of the processes
that will enter the critical section next cannot
be postponed indefinitely.

15th Feb 2006
C.Namrata Mahender

6

Solution to Critical-Section Problem(cont.)

3.Bounded Waiting. A bound must exist on the
number of times that other processes are allowed
to enter their critical sections after a process has
made a request to enter its critical section and
before that request is granted.

Assume that each process executes at a nonzero
speed
No assumption concerning relative speed of the n
processes.

15th Feb 2006
C.Namrata Mahender

7

Initial Attempts to Solve Problem

• Only 2 processes, P0 and P1
• General structure of process Pi (other process Pj)

do {
entry section

critical section
exit section

reminder section
} while (1);

• Processes may share some common variables to
synchronize their actions.

15th Feb 2006
C.Namrata Mahender

8

Bakery Algorithm

Critical section for n processes
• Before entering its critical section, process receives a

number. Holder of the smallest number enters the
critical section.

• If processes Pi and Pj receive the same number, if i <
j, then Pi is served first; else Pj is served first.

• The numbering scheme always generates numbers in
increasing order ; i.e., 1,2,3,3,3,3,4,5...

15th Feb 2006
C.Namrata Mahender

9

Semaphores
• Generalized synchronization tools (mechanisms)
• Integer variable S is accessed only through two atomic operations

wait and signal
– Wait(S) : while S <= 0 do no-op;

S:=S-1;
– Signal(S) : S := S + 1;
– S is initialized to 1 and then becomes 0 if it is held by a process

in the CS
– Only one process will be able to modify S at a time, forcing

other processes to wait in the while loop
• this will ensure mutual exclusion

15th Feb 2006
C.Namrata Mahender

10

Busy Waiting

• One problem that the semaphore definition
causes is that processes waiting for access to
the semaphore are forced to loop continuously

-known as busy waiting
• which means that they tie up the CPU doing

nothing
– This type of semaphore is called a spinlock

15th Feb 2006
C.Namrata Mahender

11

• Instead, we can force the process to block
itself and while blocked, another process
can gain access to the CPU
– When the process becomes unblocked, we

can revert back to it or place it back into the
ready queue

15th Feb 2006
C.Namrata Mahender

12

What is Deadlock?

• The state of a set of permanently blocked
processes
• Unblocking of one relies on progress of another
• But none can make progress!

• Example
• Processes A and B
• Resources X and Y
• A holding X, waiting for Y
• B holding Y, waiting for X
• Each is waiting for the other; will wait forever

15th Feb 2006
C.Namrata Mahender

13

Conditions for Deadlock

• Mutual Exclusion
• Only one process may use a resource at a time

• Hold-and-Wait
• Process holds resources while waiting for others

• No Preemption
• Can’t take a resource away from a process

• Circular Wait
• The waiting processes form a cycle

15th Feb 2006
C.Namrata Mahender

14

How to Attack the Deadlock Problem

• Deadlock Prevention
• Make deadlock impossible by removing a
condition

• Deadlock Avoidance
• Avoid getting into situations that lead to
deadlock

• Deadlock Detection
• Don’t try to stop deadlocks
• Rather, if they happen, detect and resolve

15th Feb 2006
C.Namrata Mahender

15

Deadlock Prevention
Simply prevent any one of the conditions for deadlock
• Mutual exclusion

• Relax where sharing is possible
• Hold-and-wait

• Get all resources simultaneously (wait until all free)
• No preemption

• Allow resources to be taken away
• Circular wait

• Order all the resources, force ordered acquisition

15th Feb 2006
C.Namrata Mahender

16

Deadlock Avoidance

• Avoid situations that lead to deadlock
• Selective prevention
• Remove condition only when deadlock a
possibility

• Works with incremental resource requests
• Resources are asked for in increments
• Do not grant request that can lead to a deadlock

• Requires knowledge of maximum resource
requirements

15th Feb 2006
C.Namrata Mahender

17

Banker’s Algorithm: Concepts

• System has a fixed number of processes and resources
• Each process has zero or more resources allocated

• System state: either safe or unsafe
• Depends on allocation of resources to processes

• Safe state: deadlock is absolutely avoidable
• Can avoid deadlock by certain order of execution

• Unsafe state: deadlock is possible (but not certain)
• May not be able to avoid deadlock

15th Feb 2006
C.Namrata Mahender

18

Safe, Unsafe, and Deadlock States

15th Feb 2006
C.Namrata Mahender

19

Deadlock Detection and Recovery

• Don’t do anything special to prevent or avoid
deadlocks
• If they happen, let them happen
• Periodically, try to detect if a deadlock occurred
• Do something (or even nothing) about it

• Reasoning
• Deadlocks rarely happen
• Cost of prevention or avoidance is not worth it
• Deal with them in special way (may be very
costly)

15th Feb 2006
C.Namrata Mahender

20

Detecting Deadlocks

• Construct resource allocation “wait-for” graph
• if cycle, deadlock

• Requires
• identifying all resources
• tracking their use
• periodically running
• detection algorithm

15th Feb 2006
C.Namrata Mahender

21

Recovery from Deadlock

• Abort all deadlocked processes
• Will remove deadlock, but drastic and
costly

• Abort deadlocked processes one-at-at-time
• Do until deadlock goes away (need to
detect)
• What order should processes be aborted?

15th Feb 2006
C.Namrata Mahender

22

Thank you

	Process management (lower module)
	Synchronization
	Synchronization(cont..)
	The Critical-Section Problem
	Solution to Critical-Section Problem
	Solution to Critical-Section Problem(cont.)
	Initial Attempts to Solve Problem
	Bakery Algorithm
	Semaphores
	Busy Waiting
	
	What is Deadlock?
	Conditions for Deadlock
	How to Attack the Deadlock Problem
	Deadlock Prevention
	Deadlock Avoidance
	Banker’s Algorithm: Concepts
	Safe, Unsafe, and Deadlock States
	Deadlock Detection and Recovery
	Detecting Deadlocks
	Recovery from Deadlock
	

