Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

Department of Chemistry

Dr. M. K. Lande Professor

Mulliken symbol .

$A, B, E, T, A_{g}, A_{1 g}, A_{2 g}, B_{g}, B_{1 g}, B_{2 g}, A_{u}, B_{u}, E, E_{g}, T_{1 g}, T_{2 g} T_{2 u}$

What are a meaning of Mulliken symbols ?

Mulliken symbolism Rules for Irreducible representation .

* Consider character table for $\mathrm{C}_{3 \mathrm{v}}$ point group .

$C_{3 V}$	E	$2 C_{2}$	$3 \sigma_{v}$
A_{1}	1	1	1
A_{2}	1	1	-1
E	2	-1	0

* $\mathrm{A}_{1}, \mathrm{~A}_{2}$, E be the Mulliken symbol which has certain meaning

See the character under E class and represent symbol A, B, E and T using following rule.

1. Dimensionality Rule :

All one dimensional representation s are designated by either A or B symbol Two dimensional IRs representation n is designated by E
Three dimensional IRs representation n is designated by T
2. See the character under Principle axis for labeling one dimensional A \& B
if $\quad \chi\left(\mathrm{C}_{\mathrm{n}}\right)=+1 \quad---------$ symmetric representation --- label A
if $\chi\left(\mathrm{C}_{\mathrm{n}}\right)=-1$----------- asymmetric representation --- label B
3. Numerical Subscript rule : $1 \& 2$ numerical subscript are attached A , B, T representation for that see the character under secondary axis C_{2}
if $\chi\left(\mathrm{C}_{2}\right)=+1 \quad$----------- symmetric representation --- label ' 1 '
if $\chi\left(\mathrm{C}_{2}\right)=-1 \quad----------$ asymmetric representation --- label '2'
if Secondary axis is absent then see the character under vertical plane if $\chi\left(\sigma_{v}\right)=+1$----------- symmetric representation --- label "1" if $\chi\left(\sigma_{v}\right)=-1 \quad----------$ asymmetric representation --- label " 2 '
4. Alphabetical subscript rule : g \&u subscript are attached to A , B, T representation for that see the character under center of inversion (i) class
if $\chi(\mathrm{i})=+1 \quad$----------- symmetric representation --- label ' g 'subscript
if χ (i) =-1 ----------- asymmetric representation --- label 'u' subscript

Question1 : Transform the $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ into Mulliken symbols of the following character table

Ex: 1
Ex: 2

$C_{2 h}$	E	C_{2}	i	σ_{h}
Γ_{1}	1	1	1	1
Γ_{2}	1	-1	1	-1
Γ_{3}	1	1	-1	-1
Γ_{4}	1	-1	-1	1

$\mathrm{C}_{3 \mathrm{~V}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{v}$
Γ_{1}	1	1	1
Γ_{2}	1	1	-1
Γ_{3}	2	-1	0

Direct product of irreducible representation :

				Direct						
$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	σ_{xz}	σ_{yz}	product		A_{1}	1	1	1
:---:	:---:	:---:	:---:							
$\mathrm{~A}_{2}$	1	1	-1							
$\mathrm{~B}_{1}$	1	-1	-1							
$\mathrm{~B}_{2}$	1	-1	1							
$\mathrm{~A}_{1} \times \mathrm{A}_{2}$	1	1	-1							
$\mathrm{~A}_{2} \times \mathrm{A}_{2}$	1	1	-1							
$\mathrm{~A}_{2} \times \mathrm{B}_{1}$	1	-1	1							
			$\mathrm{~A}_{2}$							

$$
\begin{aligned}
& \text { Product of Dimension : A, B, E, T } \\
& A \times A=A, B \times B=A \\
& A \times B=B \times A=B \\
& A \times E=B \times E=E \\
& E \times E=A+T \text { or } B+T \text { depend on } P . G \\
& E x T=A+E+T \\
& T \times T=A+E+T+T
\end{aligned}
$$

Product of subscript : 1,2,g,u

$$
1 \times 1=1
$$

$$
1 \times 2=1
$$

$$
g \times g=g
$$

$$
\mathrm{gxu}=\mathrm{u}
$$

$$
2 \times 2=1
$$

$$
\mathrm{uxu}=\mathrm{g}
$$

[symmetric]x[symmetri] = symmetric
[symmetric]x[asymmetri] = asymmetric
[asymmetric]×[asymmetric] = symmetric

Standard reduction formula :

$$
\mathrm{n}\left(\Gamma_{\mathrm{i}}\right)=\left[\mathrm{g}(\mathrm{R}) \cdot \chi_{\mathrm{RR}}(\mathrm{R}) \cdot \chi_{\mathrm{RR}}(\mathbf{R})\right] / \mathrm{h}
$$

Where
$g(R)$ - multiplying factor of respective class
$\chi_{\mathrm{IR}}(\mathrm{R})$. - character if IRs representation under respective class
$\chi_{R R}(\mathrm{R}$ - character if RRs representation under respective class
h - order of group
Q1. Find out number of time A_{1}, A_{2}, B_{1}, and B_{2} will appear in the following table order of group

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	σ_{xz}	σ_{yz}
A_{1}	1	1	1	1
$\mathrm{~A}_{2}$	1	1	-1	-1
$\mathrm{~B}_{1}$	1	-1	1	-1
$\mathrm{~B}_{2}$	1	-1	-1	-1
$\chi_{R R}(\mathrm{R})$	15	-1	3	3

Q1. Find out number of time $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{E}$ will appear in the following table order of group

$\mathrm{C}_{3 \mathrm{~V}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$
A^{2}	1	1	1
$\mathrm{~A}^{2}$	1	1	-1
E	2	-1	0
$\chi_{\mathrm{RR}}(\mathrm{R})$	21	0	3

THE END

