Dr. Babasaheb Ambedkar Marathwada University, Aurangabad Department of Chemistry

Dr. M. K. Lande Professor

M. Sc Chemistry Semester –I, Inorganic Chemistry Lact :3

- Representation of Group by Matrix
- Group multiplication table
- Rule for construction of Character Table
- Mulliken symbol

Representation of Group by Matrix : Various symmetry operations like E, σ , i, C_{n(z)} and S_{n(z)} can be represented by matrix

Identity matrix (E): coordinate (x,y,z) of object

No change of sign of coordinate after E operation,

 (x_1, y_1, z_1) E operation (x_2, y_2, z_2)

it can be represented in the form of equation

$$x_2 = x_1$$
$$y_2 = y_1$$
$$z_2 = z_1$$

$$x_{2} = 1.x_{1} + 0.y_{1} + 0.z_{1}$$

$$y_{2} = 0.x_{1} + 1.y_{1} + 0.z_{1}$$

$$z_{2} = 0.x_{1} + 0.y_{1} + 1.z_{1}$$

it can be represented in the form of matrix

$$\begin{vmatrix} x_2 \\ y_2 \\ z_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} x_1 \\ y_1 \\ z_1 \end{vmatrix}$$
$$E = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Similarly

Matrix for σ_{xy} plane

$$\sigma_{xy} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$$

Matrix for σ_{yz} plane

$$\sigma_{XZ} = \begin{vmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Matrix for σ_{xz} plane

$$\sigma_{XZ} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Matrix for (i) inversion operation

$$i = \begin{vmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$$

Matrix for $Cn_{(z)}$ rotation operation

$$C_{n(Z)} = \begin{vmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

θ	60°	90 °	120°	180°
sinθ	√3/2	1	√3/2	0
cosθ	1/2	0	- 1/2	-1

 θ - angle of rotation

Q1. Find the matrix representation of C_2 , $C_3 \& C_4$ operations.

Matrix for $S_{n(z)}$ rotation operation				
	cosθ	sinθ	0	
$S_{n(Z)} =$	- sinθ	cosθ	0	
	0	0	-1	

θ	60°	90°	120°	180°
sinθ	√3/2	1	√3/2	0
cosθ	1/2	0	- 1/2	-1

Q1. Find the matrix representation of S_2 , & S_4 operations.

Group multiplication table : Product of symmetry operation can be compiled in the form of table is called Group multiplication table

Q1. Prepare the group multiplication table for C_3 point group

$$C_n^m \cdot C_n^k = C_n^{(m+k)}$$

Q2. Prepare the group multiplication table for C_4 point group

C ₄	Е	C ¹ 4	C ² ₄	C ³ ₄
E				
C ₄ ¹				
C ₄ ²				
C ₄ ³				

Q3. Prepare the group multiplication table for C_{2v} point group

C _{2V}	E	C ₂	σ _{xz}	σ _{yz}
E				
C ₂				
σ _{xz}				
σ _{yz}				

Use matrix of E, C_2 , σ_{xz} and σ_{yz} for finding the product of symmetry operation

Q4. Prepare the group multiplication table for C_{2h} point group

C _{2h}	E	C ₂	σ _{xy}	i
E				
C ₂				
σ _{xy}				
i				

Character Table :It is a description of character under each class for irreducible representations

C _{2V}	E	C ₂	σ_{xz}	σ_{yz}
Γ_1	1	1	1	1
Γ_2	1	1	-1	-1
Γ_3	1	-1	-1	1
Γ_4	1	-1	1	- 1

Rule for construction of Character Table

Rule 1: Let E, A, B, , C, be the nonequivalent element of symmetry operation that can be carried out on the molecule , It should be written upper side of the table,

Rule 2: Let $\Gamma_1, \Gamma_2, \Gamma_3 \& \Gamma_4$ be the nonequivalent irreducible representation, which is equal to order of group, It should be written Left side in the column of the table.

Rule3: Let l_1 , l_2 , $l_3 \& l_4$ be the dimension irreducible representation. The Sum of the square of the dimension is equal to order of group,

$$\sum l_{i}^{2} = h$$
 $\ell_{1}^{2} + \ell_{2}^{2} + \ell_{3}^{2} + \ell_{4}^{2} = h$

calculated values are written under E class.

Rule4: Let g(R) be the multiplying factor of each classes and $\chi_i(R)$ be the irreducible representation under each classes then the $\sum g(R)[\chi_i(R)]^2 = h$

Rule5: Orthogonality rule : Let g(R), be the multiplying factor of each classes & $\chi_i(R)$ & $\chi_j(R)$ be the character of irreducible representation under each classes then the Γ_i . $\Gamma_i = \sum g(R)[\chi_i(R)] [\chi_i(R)] = 0$

Q. 1. Construct the character table for C_{2v} point group using suitable rules

C2v= (E, C₂,
$$\sigma_{xz}$$
, σ_{yz} ,) , Order of group= 4

According to Rule 1: Let E, C₂, σ_{xz} , σ_{yz} , be the element of symmetry operation that can be carried out on water molecule, It should be written upper side of the table,

According to Rule 2: Let $\Gamma_1, \Gamma_2, \Gamma_3 \& \Gamma_4$ be the nonequivalent irreducible representation, which is equal to order of group, It should be written Left side in the column of the table.

According to Rule3: Let l_1 , l_2 , $l_3 \& l_4$ be the dimension irreducible representation. The Sum of the square of the dimension is equal to order of group,

 $\sum l_{i}^{2} = h$

calculated values are written under E class.

According to Rule4: Let g(R) be the multiplying factor of each classes and $\chi_i(R)$ be the irreducible representation under each classes then the $\sum g(R)[\chi_i(R)]^2 = h$

 $g(E)[\chi_1(E)]^2 + g(C_2)[\chi_1(C_2)]^2 + g(\sigma_{xz})[\chi_1(\sigma_{xz})]^2 + g(\sigma_{yz})[\chi_1(\sigma_{yz})]^2 = h$

: $1x[1]^{2} + 1x[\chi_{1}(C_{2})]^{2} + 1x[\chi_{1}(\sigma_{xz})]^{2} + 1x[\chi_{1}(\sigma_{yz})]^{2} = 4$

: $1x[1]^{2} + 1x[1]^{2} + 1x[1]^{2} + 1x[1]^{2} = 4$

According to Orthogonality rule : Let g(R), be the multiplying factor of each classes $\chi_i(R)$ & $\chi_j(R)$ be the character of irreducible representation under each classes then the

 $\Gamma_{i}. \Gamma_{j} = \sum g(R) [\chi_{i}(R)] [\chi_{j}(R)] = 0$

$$\begin{split} \Gamma_{1}. \ \Gamma_{2} &= g(E) x[\chi_{1}(E)] x[\chi_{2}(E)] \\ &+ g(C_{2}) x[\chi_{1}(C_{2})] x[\chi_{2}(C_{2})] \\ &+ g(\sigma_{xz}) x[\chi_{1}(\sigma_{xz})] x[\chi_{2}(\sigma_{xz})] \\ &+ g(\sigma_{yz}) x[\chi_{1}(\sigma_{yz})] x[\chi_{2}(\sigma_{yz})] = 0 \end{split}$$

 $\Gamma_2 = (1, 1, -1, -1)$

July 3, 2018

Similarly way the Γ_2 . Γ_3 orthogonal to each other then the characters of $\Gamma_3=(1,-1-1, 1)$ And Γ_2 . Γ_4 orthogonal to each other then the characters of $\Gamma_4=(1,-1, 1, -1)$

C _{2V}	E	C_2	$\sigma_{_{XZ}}$	σ_{yz}
Γ_1	1	1	1	1
Γ_2	1	1	-1	-1
Γ_3	1	-1	-1	1
Γ_4	1	-1	1	-1

Q. 1. Construct the character table for C_{3v} point group using suitable rules

 $C_{3v} = \{E, 2C_3, 3\sigma v\}$ order of group (h)= 6

According to Rule 1, E, $2C_3$, $3\sigma_v$ irreducible representation

According to Rule 2 : Let $\Gamma_1, \Gamma_2, \Gamma_3$ irreducible representation According to Rule 3, $\sum l^2_i = h$ According to rule 4, $\sum g(R)[\chi_i(R)]^2 = h$

According to orthogonality rule Γ_i . $\Gamma_j = \sum g(R)[\chi_i(R)] [\chi_j(R)] = 0$

Γ_1	Γ_2	are	orthogonal	l to each	other	, we	get
			\mathcal{O}			,	\mathcal{O}

C _{3V}	Е	2C ₂	3σ _v
Γ_1	1	1	1
Γ_2	1	1	-1
Γ_3	2		

 Γ_1 and Γ_2 are orthogonal to each other ; Γ_1 and Γ_3 are orthogonal to each other

Aţ	pply $\Gamma_1 \Gamma_2$	$=\sum g(\mathbf{R})$	$\left[\chi_{i}(R)\right]$	$\chi_j(\mathbf{R})] = 0$
	C _{3V}	E	2C ₂	3σ _v
	Γ_1	1	1	1
	Γ_2	1	1	-1
July 3,	Γ ₃ 2018	2	Х	У

$$\Gamma_1 \Gamma_3 = \sum g(\mathbf{R}) [\chi_i(\mathbf{R})] [\chi_i(\mathbf{R})] = 0$$

Find the values x & y by solving simultaneous equation

Q1. find the dimension of $\Gamma_{1,}\Gamma_{2,}\Gamma_{3,}\Gamma_{4,}\Gamma_{5}$ irreducible representation in the following character table using suitable rule

Q2. find the character under E class of following character table

Q3. find character of Γ_1 under each classes of following character table.

THE END