Dr. Babasaheb Ambedkar Marathwada University, Aurangabad
 Department of Chemistry

Dr. M. K. Lande Professor

M. Sc Chemistry Semester -I, Inorganic Chemistry Lact :3
$>$ Representation of Group by Matrix
$>$ Group multiplication table
$>$ Rule for construction of Character Table
> Mulliken symbol

Representation of Group by Matrix : Various symmetry operations like $E, \sigma, i, C_{n(z)}$ and $S_{n(z)}$ can be represented by matrix

Identity matrix (E) : coordinate ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of object

No change of sign of coordinate after E operation,

$$
\left(x_{1}, y_{1}, z_{1}\right) \xrightarrow{\text { E operation }}\left(x_{2}, y_{2}, z_{2}\right)
$$

it can be represented in the form of equation

$$
\begin{aligned}
& x_{2}=x_{1} \\
& y_{2}=y_{1} \\
& z_{2}=z_{1}
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=1 \cdot x_{1}+0 \cdot y_{1}+0 . z_{1} \\
& y_{2}=0 . x_{1}+1 \cdot y_{1}+0 . z_{1} \\
& z_{2}=0 . x_{1}+0 . y_{1}+1 . z_{1}
\end{aligned}
$$

it can be represented in the form of matrix

$$
\left|\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right|=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right| \cdot\left|\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right|
$$

$$
E=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Similarly

Matrix for $\sigma_{x y}$ plane

$$
\sigma_{x y}=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right|
$$

Matrix for $\sigma_{x z}$ plane
$\sigma_{x z}=\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right|$

$$
\text { Matrix for } \sigma_{y z} \text { plane }
$$

$$
\sigma_{x z}=\left|\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Matrix for (i) inversion operation

$$
i=\left|\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right|
$$

Matrix for $\mathrm{Cn}_{(z)}$ rotation operation

$$
\mathrm{C}_{\mathrm{n}(\mathrm{Z})}=\left|\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|
$$

θ	60°	90°	120°	180°
$\sin \theta$	$\sqrt{ } 3 / 2$	1	$\sqrt{ } 3 / 2$	0
$\cos \theta$	$1 / 2$	0	$-1 / 2$	-1

θ - angle of rotation

Q1. Find the matrix representation of $C_{2}, C_{3} \& C_{4}$ operations.

Matrix for $S_{n(z)}$ rotation operation

$$
S_{n(Z)}=\left|\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right|
$$

θ	60°	90°	120°	180°
$\sin \theta$	$\sqrt{ } 3 / 2$	1	$\sqrt{ } 3 / 2$	0
$\cos \theta$	$1 / 2$	0	$-1 / 2$	-1

Q1. Find the matrix representation of $S_{2}, \& S_{4}$ operations.

Group multiplication table : Product of symmetry operation can be compiled in the form of table is called Group multiplication table

Q1. Prepare the group multiplication table for $\mathbf{C}_{\mathbf{3}}$ point group

C_{3}	E	$\mathrm{C}^{1}{ }_{3}$	$\mathrm{C}^{2}{ }_{3}$
E			
$\mathrm{C}_{3}{ }^{1}$			
$\mathrm{C}_{3}{ }^{2}$			

$$
\mathrm{C}_{\mathrm{n}}{ }^{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{n}}{ }^{\mathrm{k}}=\mathrm{C}_{\mathrm{n}}{ }^{(\mathrm{m}+\mathrm{k})}
$$

Q2. Prepare the group multiplication table for $\mathrm{C}_{\mathbf{4}}$ point group

C_{4}	E	$\mathrm{C}^{1}{ }_{4}$	C_{4}^{2}	$\mathrm{C}^{3}{ }_{4}$
E				
$\mathrm{C}_{4}{ }^{1}$				
$\mathrm{C}_{4}{ }^{2}$				
$\mathrm{C}_{4}{ }^{3}$				

Q3. Prepare the group multiplication table for $C_{2 v}$ point group

$C_{2 v}$	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$
E				
C_{2}				
$\sigma_{x z}$				
$\sigma_{y z}$				

Use matrix of $\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{xz}}$ and σ_{yz} for finding the product of symmetry operation

Q4. Prepare the group multiplication table for $C_{2 h}$ point group

$\mathbf{C}_{2 h}$	E	C_{2}	σ_{xy}	i
E				
C_{2}				
$\sigma_{x y}$				
i				

Character Table :It is a description of character under each class for irreducible representations

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	σ_{xz}	σ_{yz}
Γ_{1}	1	1	1	1
Γ_{2}	1	1	-1	-1
Γ_{3}	1	-1	-1	1
Γ_{4}	1	-1	1	-1

Rule for construction of Character Table

Rule 1: Let $\mathrm{E}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, be the nonequivalent element of symmetry operation that can be carried out on the molecule, It should be written upper side of the table,

Rule 2: Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \& \Gamma_{4}$ be the nonequivalent irreducible representation, which is equal to order of group, It should be written Left side in the column of the table.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	σ_{xz}	σ_{yz}
Γ_{1}				
Γ_{2}				
Γ_{3}				
Γ_{4}				

Rule3: Let $l_{1}, l_{2}, l_{3} \& l_{4}$ be the dimension irreducible representation. The Sum of the square of the dimension is equal to order of group,
$\sum l_{\mathrm{i}}=\mathrm{h}$

$$
\ell^{2}{ }_{1}+\ell^{2}{ }_{2}+\ell^{2}{ }_{3}+\ell^{2}{ }_{4}=\boldsymbol{h}
$$

calculated values are written under E class.

$C_{2 v}$	E	C_{2}	σ_{xz}	σ_{yz}
Γ_{1}				
Γ_{2}				
Γ_{3}				
Γ_{4}				

Rule4: Let $g(R)$ be the multiplying factor of each classes and $\chi_{i}(R)$ be the irreducible representation under each classes then the

$$
\sum \mathrm{g}(\mathrm{R})\left[\chi_{\mathrm{i}}(\mathrm{R})\right]^{2}=\mathrm{h}
$$

Rule5: Orthogonality rule : Let $g(R)$, be the multiplying factor of each classes $\& \chi_{i}(R) \& \chi_{j}(R)$ be the character of irreducible representation under each classes then the

$$
\Gamma_{i} \cdot \Gamma_{j}=\sum g(R)\left[\chi_{i}(R)\right]\left[\chi_{j}(R)\right]=0
$$

Q. 1. Construct the character table for $\mathrm{C}_{2 \mathrm{v}}$ point group using suitable rules

$$
\mathrm{C} 2 \mathrm{v}=\left(\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{xz}},, \sigma_{\mathrm{yz}},\right) \quad, \quad \text { Order of group }=4
$$

According to Rule 1 : Let $\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{xz}}$, , σ_{yz}, be the element of symmetry operation that can be carried out on water molecule, It should be written upper side of the table,

According to Rule 2: Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \& \Gamma_{4}$ be the nonequivalent irreducible representation, which is equal to order of group, It should be written Left side in the column of the table.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	σ_{xz}	σ_{yz}
Γ_{1}				
Γ_{2}				
Γ_{3}				
Γ_{4}				

According to Rule3: Let $l_{1}, l_{2}, l_{3} \& l_{4}$ be the dimension irreducible representation. The Sum of the square of the dimension is equal to order of group,

$$
\sum l_{\mathrm{i}}^{2}=\mathrm{h}
$$

calculated values are written under E class.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	σ_{xz}	σ_{yz}
Γ_{1}	1			
Γ_{2}	1			
Γ_{3}	1			
Γ_{4}	1			

$$
\begin{gathered}
\sum \ell^{2}{ }_{\mathrm{i}}=\mathrm{h} \\
\ell^{2}{ }_{1},+\ell^{2}{ }_{2}+\ell^{2}{ }_{3}+\ell^{2}{ }_{4}=\boldsymbol{4} \\
1^{2}+1^{2}+1^{2}+1^{2}=4
\end{gathered}
$$

According to Rule4: Let $g(R)$ be the multiplying factor of each classes and $\chi_{i}(R)$ be the irreducible representation under each classes then the

$$
\sum \mathrm{g}(\mathrm{R})\left[\chi_{\mathrm{i}}(\mathrm{R})\right]^{2}=\mathrm{h}
$$

$$
\begin{aligned}
& g(E)\left[\chi_{1}(E)\right]^{2}+g\left(C_{2}\right)\left[\chi_{1}\left(C_{2}\right)\right]^{2}+g\left(\sigma_{x z}\right)\left[\chi_{1}\left(\sigma_{x z}\right)\right]^{2}+g\left(\sigma_{y z}\right)\left[\chi_{1}\left(\sigma_{y z}\right)\right]^{2}=\mathrm{h} \\
& : 1 x[1]^{2}+1 x\left[\chi_{1}\left(C_{2}\right)\right]^{2}+1 x\left[\chi_{1}\left(\sigma_{x z}\right)\right]^{2}+1 x\left[\chi 1\left(\sigma_{y z}\right)\right]^{2}=4 \\
& \left.: 1 x[1]^{2}+1 x[1]^{2}+1 x[1)\right]^{2}+1 x[1]^{2}=4
\end{aligned}
$$

$\mathrm{C}_{2 v}$	E	C_{2}	O_{xz}	o_{rz}
Γ_{1}	1	1	1	1
Γ_{2}	1			
Γ_{3}	1			
Γ_{4}	1			

According to Orthogonality rule : Let $g(R)$, be the multiplying factor of each classes $\chi_{i}(R) \& \chi_{j}(R)$ be the character of irreducible representation
under each classes then the

$$
\Gamma_{\mathrm{i}} \cdot \Gamma_{\mathrm{j}}=\sum \mathrm{g}(\mathrm{R})\left[\chi_{\mathrm{i}}(\mathrm{R})\right]\left[\chi_{\mathrm{j}}(\mathrm{R})\right]=0
$$

```
\(\Gamma_{1} \cdot \Gamma_{2}=g(E) \times\left[\chi_{1}(E)\right] \times\left[\chi_{2}(E)\right]\)
    \(+\mathbf{g}\left(\mathrm{C}_{2}\right) \mathbf{x}\left[\chi_{1}\left(\mathrm{C}_{2}\right)\right] \mathbf{x}\left[\chi_{2}\left(\mathrm{C}_{2}\right)\right]\)
    \(+\mathrm{g}\left(\sigma_{\mathrm{xz}}\right) \mathrm{x}\left[\chi_{1}\left(\mathrm{\sigma}_{\mathrm{xz}}\right)\right] \times\left[\chi_{2}\left(\sigma_{\mathrm{xz}}\right)\right]\)
    \(+\mathbf{g}\left(\sigma_{y z}\right) \times\left[\chi_{1}\left(\sigma_{y z}\right)\right] \times\left[\chi_{2}\left(\sigma_{y z}\right)\right]=0\)
```

$\Gamma_{1} . \Gamma_{2}=1 \times 1 \times 1$
$+1 \times 1 \times\left[\chi_{2}\left(\mathrm{C}_{2}\right)\right]$
$+1 \times 1 x\left[\chi_{2}\left(\sigma_{x z}\right)\right]$
$+1 x 1 x\left[\chi_{2}\left(\sigma_{y z}\right)\right]=0$

Any two characters are negative
$\Gamma_{1} . \Gamma_{2}=1 \times 1 \times 1+1 \times 1 \times[1]$

$$
+1 \times 1 \times[-1]+1 \times 1 \times[-1]=0
$$

$\Gamma_{1} \cdot \Gamma_{2}=1+1-1-1=0$
$\Gamma_{2}=(1,1,-1,-1)$

Similarly way the $\Gamma_{2} \cdot \Gamma_{3}$ orthogonal to each other then the characters of $\Gamma_{3}=(1,-1-1,1)$
And $\Gamma_{2} . \Gamma_{4}$ orthogonal to each other then the characters of $\Gamma_{4}=(1,-1,1,-1)$

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\mathrm{\sigma}_{\mathrm{xz}}$	σ_{vz}
Γ_{1}	1	1	1	1
Γ_{2}	1	1	-1	-1
Γ_{3}	1	-1	-1	1
Γ_{4}	1	-1	1	-1

Q. 1. Construct the character table for $\mathrm{C}_{3 \mathrm{v}}$ point group using suitable rules

$$
C_{3 v}=\left\{\mathrm{E}, 2 \mathrm{C}_{3}, 3 \sigma \mathrm{v}\right\} \quad \text { order of group }(\mathrm{h})=6
$$

According to Rule 1, $\mathrm{E}, 2 \mathrm{C}_{3}, 3 \sigma_{\mathrm{v}}$ irreducible representation
According to Rule 2 : Let $\Gamma_{1,} \Gamma_{2}, \Gamma_{3}$ irreducible representation
According to Rule 3
$\sum l_{\mathrm{i}}^{2}=\mathrm{h}$
According to rule 4, $\quad \sum \mathrm{g}(\mathrm{R})\left[\chi_{\mathrm{i}}(\mathrm{R})\right]^{2}=\mathrm{h}$

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{2}$	$3 \sigma_{v}$
Γ_{1}	1	1	1
Γ_{2}	1		
Γ_{3}	2		

According to orthogonality rule $\Gamma_{i} . \Gamma_{j}=\sum \mathrm{g}(\mathrm{R})\left[\chi_{\mathrm{i}}(\mathrm{R})\right]\left[\chi_{\mathrm{j}}(\mathrm{R})\right]=0$
$\Gamma_{1} \Gamma_{2}$ are orthogonal to each other, we get

$\mathrm{C}_{3 \mathrm{~V}}$	E	$2 \mathrm{C}_{2}$	$3 \sigma_{\mathrm{v}}$
Γ_{1}	1	1	1
Γ_{2}	1	1	-1
Γ_{3}	2		

Γ_{1} and Γ_{2} are orthogonal to each other ; Γ_{1} and Γ_{3} are orthogonal to each other

$$
\text { Apply } \Gamma_{1} \Gamma_{2}=\sum \mathrm{g}(\mathrm{R})\left[\chi_{\mathrm{i}}(\mathrm{R})\right]\left[\chi_{\mathrm{j}}(\mathrm{R})\right]=0 \quad \Gamma_{1} \Gamma_{3}=\sum \mathrm{g}(\mathrm{R})\left[\chi_{\mathrm{i}}(\mathrm{R})\right]\left[\chi_{\mathrm{j}}(\mathrm{R})\right]=0
$$

$\mathrm{C}_{3 V}$	E	$2 \mathrm{C}_{2}$	$3 \sigma_{V}$
Γ_{1}	1	1	1
Γ_{2}	1	1	-1
Γ_{3}	2	x	y

Find the values x \& y by solving simultaneous equation

Q1. find the dimension of $\Gamma_{1,} \Gamma_{2}, \Gamma_{3}, \Gamma_{4}, \Gamma_{5}$ irreducible representation in the following character table using suitable rule

T_{d}	E	$6 \mathrm{C}_{4}$	$3 \mathrm{C}_{2}$	$6 \mathrm{~S}_{4}$	$6 \sigma_{\mathrm{d}}$
Γ_{1}					
Γ_{2}					
Γ_{3}					
Γ_{4}					
Γ_{5}					

Q2. find the character under E class of following character table

D_{3}	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$
Γ_{1}			
Γ_{2}			
Γ_{3}			

Q3. find character of Γ_{1} under each classes of following character table.

T_{d}	E	$6 \mathrm{C}_{4}$	$3 \mathrm{C}_{2}$	$6 \mathrm{~S}_{4}$	$6 \sigma_{\mathrm{d}}$
Γ_{1}					

THE END

