Dr. Babasaheb Ambedkar Marathwada University, Aurangabad Department of Chemistry

Dr. M. K. Lande Professor M. Sc. Chemistry Semester –I Inorganic chemistry Lect: 2

o Point Group of molecules

Classification of Point group

Point group:

- It is a collection of all the symmetry operation that can be carried out on the molecule is called as point group.
- It is a short hand notation which gives an information about the number of operation that can be carried out on the molecules.
- Point group must satisfy the properties of group and also used for the storing the information regarding the structure of molecule.
- In a point group, all symmetry elements must pass through the center of mass (the point).
- General notation of point groups : C_s , C_1 , C_i , C_n , C_{nv} , C_{nh} , D_n , D_{nh} , D_{nd} , T_d , O_h , $C_{\infty v}$, $D_{\infty h}$

Classification of Point group

- 1. Molecules of low symmetry
- 2. Molecules of high symmetry
- 3. Molecules of special symmetry

1. Molecules of low symmetry:

Least number of symmetry elements possessed by geometrical molecules. Generally molecules the molecules has e highly unsymmetrically substituted atoms

It includes C₁, C_s, C_i point group

 $\mathbf{C_1}$ **Point group**: The molecules contains only E element and other elements of symmetries are absents. Such molecules possesses highly unsymmetrically substituted atems

Ex. Tetrahedral CHClBrI , Square pyramidal NbF₇

 C_s **Point group**: The molecules contains only E and σ plane and other elements of symmetries are absents.

Ex. Phenol, Aniline,

 C_i Point group: The molecules contains only E and i center of inversion and other elements of symmetries are absents.

Ex. Trans $C_2H_2F_2Cl_2$

2. Molecules of high symmetry:

 C_n **Point group**: The molecules contains only E and C_n rotational axis and other elements of symmetries are absents.

Arr Ex. PPh₃, - C₃ point group (E, C₃ axis) PPh₃ - C₃ point group (E, C₃ axis)

 C_{nv} Point group : The molecules contains only E , C_n axis and $n\sigma_v$ planes

- ❖ Ex. Draw the structure and label the possible element of symmetry and identify the point group of the following molecules
- \bullet H₂O C_{2V}
- $NH_3 C_{3V}$
- ❖POCl₃ C_{3V}
- ❖T Shaped ClF₃ C_{2V}
- ❖Square pyramidal WOF₄ C₄V

 C_{nh} **Point group**: The molecules has E, C_n axis, center of inversion 'i' and σ_h planes perpendicular to principal axis.

- * Ex. Draw the structure and label the possible element of symmetry and identify the point group of the following molecules
- \diamond trans 1,2 dichloro ethylene C_{2h}
- \bullet B(OH)₃ C_{3h}

 $\boldsymbol{D_n}$ Point group : The molecule contains $\boldsymbol{C_n}$ axis and $n\boldsymbol{C_2}$ perpendicular to $\boldsymbol{C_n}$ axis .

$$Dn = C_n + nC_2 \perp C_n$$

 $\mathbf{D_{nh}}$ **Point group**: The molecule contains C_n axis and nC_2 perpendicular to C_n axis and C_n perpendicular σ_h

$$D_{nh} = C_n + nC_2 \perp C_n + C_n \perp \sigma_h$$

Draw the structure and label element of symmetry and identify point group of the following molecules

- ❖ BF₃, CO₃⁻⁻, PCl₅ D_{3h} point group
- \bullet [PtCl₄]--, trans [CoCl₂(NH₃)₄]+ D4h point group
- \bullet C₅H₅- -D_{5h} point group
- \bullet C₆H₆ D_{6h} point group
- \bullet Eclipsed Fe(C₅H₅₎₂ -D_{5h} point group

 \textbf{D}_{nd} **Point group** : The molecule contains C_n axis and nC_2 perpendicular to C_n axis and C_n perpendicular σ_h

$$D_{nh} = C_n + nC_2 \perp C_n + C_n \perp \sigma_d$$

Draw the structure and label element of symmetry and identify point group Staggered confirmation $Fe(C_5H_5)_2$ _ D_{5d}

3. Molecules of Special Symmetry:

 $C_{\infty V}$ **Point group**: heteronuclear diatomic molecules contains C_{∞} axis and ∞ σ_v plane and other elements of symmetries are absents.

 \bullet Ex: HCl, CO, NO CN, HCN - $\mathbf{C}_{\infty \mathbf{V}}$ point group

 $\mathbf{D}_{\infty h}$ Point group: The molecule contains C_{∞} axis and ∞C_2 perpendicular to C_{∞} axis and C_{∞} perpendicular σ_h

$$D_{\infty h} = C_{\infty} + \infty C_2 \perp C_{\infty} + C_{\infty} \perp \sigma_h$$

Draw the structure of following molecules and lable element of symmetry and identify the point group Cl_2 , H_2 , CO_2 , $\mathbf{D}_{\infty \mathbf{h}}$ point group

4. Molecules containing multiple higher order of axes:

 $\mathbf{T_d}$ **Point group**: Symmetrical tetrahedral molecules has multiple order rotational axis

Ex : CH₄, SiCl₄, TiCl₄, **T**_d point group

 $T_d = (E, 4C_3^1, 4C_3^2, 3C_2^1, 3S_4^1, 3S_4^3, 6 \sigma_d)$ order of group is 24

 O_h **Point group**: Symmetrical octahedral molecule has multiple order of rotational axis and has O_h point group

 \star Ex : FeF₆, AB₆

 O_h = (E, $3C_4^{\ 1}$, $3C_4^{\ 2}$, $3C_4^{\ 3}$, $6C_2^{\ 1}$, $4C_3^{\ 1}$, $4C_3^{\ 2}$ $3S_4^{\ 1}$, $3S_4^{\ 3}$, $4S_6^{\ 1}$, $4S_6^{\ 5}$, i, $3\sigma_h$, $6\sigma_d$) order of group is 48

Molecules	Symmetry elements in the groups	h	Poin t Gro up
CFClBrI	E,	1	\mathbf{C}_1
HOCl	Ε, σ	2	C _s
Trans-CHFCl-CHFCl	E, i	2	C _i
Cis- H ₂ O ₂	E, C_2	2	C_2
H ₂ O, H ₂ S, SO ₂	$E, C_2, 2\sigma_v$	4	C_{2V}
NH ₃	$E, C_3^{\ 1}, C_3^{\ 2}, 2\sigma_v$	6	C _{3V}
SF ₅ Cl	$E, C_4^{\ 1}, C_4^{\ 2} = C_2^{\ 1}, C_4^{\ 3} 4\sigma_v$	8	C _{4V}
HC1	$E, C_{2\infty}, \infty \sigma_v$	∞	$C_{\infty V}$
Trans-C ₂ H ₂ Cl ₂	E, C_2, i, σ_h	4	C _{2h}
$Tran - Pt(NH_3)_2Cl_2$	$E, C_2, 2C_2, 2\sigma_v$, i, σ_h	8	D _{2h}
BF ₃	$E, C_3^1, C_3^2, 3C_2^1, 3\sigma_{v_1}\sigma_{h_2}S_6^1, S_6^5$	12	D _{3h}
	$E, C_4^{\ 1}, C_4^{\ 2} = C_2^{\ 1}, C_4^{\ 3}, 4C^{21}, 2\sigma_{v_i} 2\sigma_{d_i} \sigma_{h_i, i} S_4^{\ 1}, S_4^{\ 5}$	16	D _{4h}
C_6H_6	$E, C_{2\infty}, \infty \sigma_{v, \sigma_{h, i}}$	&	$D_{\infty h}$
CH ₄	$E, 4C_3^{\ 1}, 4C_3^{\ 2}, 3C_2^{\ 1}, 3S_4^{\ 1}, 3S_4^{\ 3}, 6 \sigma_d$	24	T _d
FeF ₆	$E, 3C_4^{\ 1}, 3C_4^{\ 2}, 3C_4^{\ 3}, 6C_2^{\ 1}, 4C_3^{\ 1}, 4C_3^{\ 2} 3S_4^{\ 1}, 3S_4^{\ 3}, 4S_6^{\ 1}, 4S_6^{\ 5}, i, 3\sigma_h, 6\sigma_d$	48	O _h

THE END