Dr. Babasaheb Ambedkar Marathwada University, Aurangabad
Department of Chemistry

Dr. M. K. Lande Professor

 M. Sc. Chemistry Semester -I Inorganic chemistry Lect : 2- Point Group of molecules
- Classification of Point group

Point group :

- It is a collection of all the symmetry operation that can be carried out on the molecule is called as point group.
- It is a short hand notation which gives an information about the number of operation that can be carried out on the molecules.
- Point group must satisfy the properties of group and also used for the storing the information regarding the structure of molecule.
- In a point group, all symmetry elements must pass through the center of mass (the point).
- General notation of point groups: $\mathrm{C}_{\mathrm{s}}, \mathrm{C}_{1}, \mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{n}}, \mathrm{C}_{\mathrm{nv}}, \mathrm{C}_{\mathrm{nh}}, \mathrm{D}_{\mathrm{n}}$, $\mathrm{D}_{\mathrm{nh}}, \mathrm{D}_{\mathrm{nd}}, \mathrm{T}_{\mathrm{d}}, \mathrm{O}_{\mathrm{h}}, \mathrm{C}_{\infty v}, \mathrm{D}_{\infty h}$

Classification of Point group

1. Molecules of low symmetry
2. Molecules of high symmetry
3. Molecules of special symmetry
4. Molecules of low symmetry :

Least number of symmetry elements possessed by geometrical molecules. Generally molecules the molecules has e highly unsymmetrically substituted atoms
It includes $\mathrm{C}_{1}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{i}}$ point group
\mathbf{C}_{1} Point group : The molecules contains only E element and other elements of symmetries are absents. Such molecules possesses highly unsymmetrically substituted atems

Ex. Tetrahedral CHClBrI , Square pyramidal NbF_{7}
\mathbf{C}_{s} Point group : The molecules contains only E and σ plane and other elements of symmetries are absents .

Ex. Phenol, Aniline,

\mathbf{C}_{i} Point group : The molecules contains only E and i center of inversion and other elements of symmetries are absents .

Ex. Trans $\mathrm{C}_{2} \mathbf{H}_{2} \mathrm{~F}_{2} \mathrm{Cl}_{2}$

2. Molecules of high symmetry :
\mathbf{C}_{n} Point group : The molecules contains only E and C_{n} rotational axis and other elements of symmetries are absents .

* Ex. $\mathrm{PPh}_{3},-\mathrm{C}_{3}$ point group ($\mathrm{E}, \mathrm{C}_{3}$ axis)
$\mathrm{PPh}_{3}-\mathrm{C}_{3}$ point group ($\mathrm{E}, \mathrm{C}_{3}$ axis)
\mathbf{C}_{nv} Point group : The molecules contains only $\mathrm{E}, \mathrm{C}_{\mathrm{n}}$ axis and $\mathrm{n} \sigma_{\mathrm{v}}$ planes
* Ex. Draw the structure and label the possible element of symmetry and identify the point group of the following molecules
$* \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2 \mathrm{~V}}$
$* \mathrm{NH}_{3}-\mathrm{C}_{3 \mathrm{~V}}$
$* \mathrm{POCl}_{3}-\mathrm{C}_{3 \mathrm{~V}}$
$*$ T Shaped $\mathrm{ClF}_{3}-\mathrm{C}_{2 \mathrm{~V}}$
*Square pyramidal $\mathrm{WOF}_{4}-\mathrm{C}_{4 \mathrm{~V}}$
\mathbf{C}_{nh} Point group : The molecules has $\mathrm{E}, \mathrm{C}_{\mathrm{n}}$ axis, center of inversion ' i ' and σ_{h} planes perpendicular to principal axis .
* Ex. Draw the structure and label the possible element of symmetry and identify the point group of the following molecules
* trans 1,2 dichloro ethylene - $\mathrm{C}_{2 \mathrm{~h}}$
* $\mathrm{B}(\mathrm{OH})_{3}$
$-\mathrm{C}_{3 \mathrm{~h}}$
\mathbf{D}_{n} Point group : The molecule contains C_{n} axis and nC_{2} perpendicular to C_{n} axis .
$\mathrm{Dn}=\mathrm{C}_{\mathrm{n}}+\mathrm{nC}_{2} \perp \mathrm{C}_{\mathrm{n}}$ *
$\mathbf{D}_{\text {nh }}$ Point group : The molecule contains C_{n} axis and nC_{2} perpendicular to C_{n} axis and C_{n} perpendicular σ_{h}

$$
\mathrm{D}_{\mathrm{nh}}=\mathrm{C}_{\mathrm{n}}+\mathrm{nC}_{2} \perp \mathrm{C}_{\mathrm{n}}+\mathrm{C}_{\mathrm{n}} \perp \sigma_{\mathrm{h}}
$$

Draw the structure and label element of symmetry and identify point group of the following molecules

* $\quad \mathrm{BF}_{3}, \mathrm{CO}_{3}^{--}, \mathrm{PCl}_{5}-\mathrm{D}_{3 \mathrm{~h}}$ point group
$\left[\mathrm{PtCl}_{4}{ }^{\text {l-- }}\right.$, trans $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}-\mathrm{D} 4 \mathrm{~h}$ point group
$\mathrm{C}_{5} \mathrm{H}_{5}-\quad-\mathrm{D}_{5 \mathrm{~h}}$ point group
$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{D}_{6 \mathrm{~h}}$ point group
* Eclipsed $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5) 2} \quad-\mathrm{D}_{5 \mathrm{~h}}\right.$ point group
$\mathbf{D}_{\text {nd }}$ Point group : The molecule contains C_{n} axis and nC_{2} perpendicular to C_{n} axis and C_{n} perpendicular σ_{h}
$\mathrm{D}_{\mathrm{nh}}=\mathrm{C}_{\mathrm{n}}+\mathrm{nC}_{2} \perp \mathrm{C}_{\mathrm{n}}+\mathrm{C}_{\mathrm{n}} \perp \sigma_{\mathrm{d}}$

Draw the structure and label element of symmetry and identify point group Staggered confirmation $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ - $\mathrm{D}_{5 \mathrm{~d}}$
3. Molecules of Special Symmetry :
$\mathbf{C}_{\infty \mathrm{V}}$ Point group : heteronuclear diatomic molecules contains C_{∞} axis and $\infty \sigma_{\mathrm{v}}$ plane and other elements of symmetries are absents .

* Ex : $\mathrm{HCl}, \mathrm{CO}, \mathrm{NO} \mathrm{CN}, \mathrm{HCN}-\mathbf{C}_{\infty \mathrm{V}}$ point group
$\mathbf{D}_{\infty h}$ Point group : The molecule contains C_{∞} axis and $\infty \mathrm{C}_{2}$ perpendicular to C_{∞} axis and C_{∞} perpendicular σ_{h}

$$
\mathrm{D}_{\infty \mathrm{h}}=\mathrm{C}_{\infty}+\infty \mathrm{C}_{2} \perp \mathrm{C}_{\infty}+\mathrm{C}_{\infty} \perp \sigma_{\mathrm{h}}
$$

Draw the structure of following molecules and lable element of symmetry and identify the point group $\mathrm{Cl}_{2}, \mathrm{H}_{2}, \mathrm{CO}_{2}, \mathbf{D}_{\infty \mathrm{h}}$ point group
4. Molecules containing multiple higher order of axes:
T_{d} Point group : Symmetrical tetrahedral molecules has multiple order rotational axis

Ex : $\mathrm{CH}_{4}, \mathrm{SiCl}_{4}, \mathrm{TiCl}_{4}, \mathrm{~T}_{\mathrm{d}}$ point group
$\mathrm{T}_{\mathrm{d}}=\left(\mathrm{E}, 4 \mathrm{C}_{3}{ }^{1}, 4 \mathrm{C}_{3}{ }^{2}, 3 \mathrm{C}_{2}{ }^{1}, 3 \mathrm{~S}_{4}{ }^{1}, 3 \mathrm{~S}_{4}{ }^{3}, 6 \sigma_{\mathrm{d}}\right)$ order of group is 24

\mathbf{O}_{h} Point group : Symmetrical octahedral molecule has multiple order of rotational axis and has O_{h} point group

* $\quad \mathrm{Ex}: \mathrm{FeF}_{6}, \mathrm{AB}_{6}$
$\mathrm{O}_{\mathrm{h}}=\left(\mathrm{E}, 3 \mathrm{C}_{4}{ }^{1}, 3 \mathrm{C}_{4}{ }^{2}, 3 \mathrm{C}_{4}{ }^{3}, 6 \mathrm{C}_{2}{ }^{1}, 4 \mathrm{C}_{3}{ }^{1}, 4 \mathrm{C}_{3}{ }^{2} 3 \mathrm{~S}_{4}{ }^{1}, 3 \mathrm{~S}_{4}{ }^{3}, 4 \mathrm{~S}_{6}{ }^{1}, 4 \mathrm{~S}_{6}{ }^{5}, \mathrm{i}\right.$, $3 \sigma_{h}, 6 \sigma_{d}$) order of group is 48

Molecules	Symmetry elements in the groups	h	Poin t Gro up
CFClBrI	E,	1	C_{1}
HOCl	E, σ	2	C_{s}
Trans-CHFCl-CHFCl	E, i	2	C_{i}
Cis- $\mathrm{H}_{2} \mathrm{O}_{2}$	E, C_{2}	2	C_{2}
$\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$	E, $\mathrm{C}_{2}, 2 \sigma_{\mathrm{v}}$	4	$\mathrm{C}_{2 \mathrm{~V}}$
NH_{3}	E, $\mathrm{C}_{3}{ }^{1}, \mathrm{C}_{3}{ }^{2}, 2 \sigma_{\mathrm{v}}$	6	$\mathrm{C}_{3 \mathrm{~V}}$
$\mathrm{SF}_{5} \mathrm{Cl}$	E, $\mathrm{C}_{4}{ }^{1}, \mathrm{C}_{4}{ }^{2}=\mathrm{C}_{2}{ }^{1}, \mathrm{C}_{4}{ }^{3} 4 \sigma_{\mathrm{v}}$	8	$\mathrm{C}_{4 \mathrm{~V}}$
HCl	E, , $\mathrm{C}_{2 \infty}, \infty \sigma_{\mathrm{v}}$	∞	$\mathrm{C}_{\infty \mathrm{V}}$
Trans- $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$	E, $\mathrm{C}_{2}, \mathrm{i}, \sigma_{\mathrm{h}}$	4	$\mathrm{C}_{2 \mathrm{~h}}$
Tran - $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}{ }_{2}$	E, $\mathrm{C}_{2}, 2 \mathrm{C}_{2}^{\prime}, 2 \sigma_{\mathrm{v}}, \mathrm{i}, \sigma_{\mathrm{h}}$	8	$\mathrm{D}_{2 \mathrm{~h}}$
BF_{3}	E, $\mathrm{C}_{3}{ }^{1}, \mathrm{C}_{3}{ }^{2}, 3 \mathrm{C}_{2}{ }^{1}, 3 \sigma_{\mathrm{v}}, \sigma_{\mathrm{h},} \mathrm{S}_{6}{ }^{1}, \mathrm{~S}_{6}{ }^{5}$	12	$\mathrm{D}_{3 \mathrm{~h}}$
	E, $\mathrm{C}_{4}{ }^{1}, \mathrm{C}_{4}{ }^{2}=\mathrm{C}_{2}{ }^{1}, \mathrm{C}_{4}{ }^{3}, 4 \mathrm{C}^{21}, 2 \sigma_{\mathrm{v},} 2 \sigma_{\mathrm{d},} \sigma_{\mathrm{h}, \text {, i, }} \mathrm{S}_{4}{ }^{1}, \mathrm{~S}_{4}{ }^{5}$	16	$\mathrm{D}_{4 \mathrm{~h}}$
$\mathrm{C}_{6} \mathrm{H}_{6}$	E, , $\mathrm{C}_{2 \infty}, \infty \sigma_{\mathrm{v},} \sigma_{\mathrm{h}, \mathrm{i}}$	∞	$\mathrm{D}_{\text {ch }}$
CH_{4}	E, $4 \mathrm{C}_{3}{ }^{1}, 4 \mathrm{C}_{3}{ }^{2}, 3 \mathrm{C}_{2}{ }^{1}, 3 \mathrm{~S}_{4}{ }^{1}, 3 \mathrm{~S}_{4}{ }^{3}, 6 \sigma_{\mathrm{d}}$	24	T_{d}
FeF_{6}	E, $3 \mathrm{C}_{4}{ }^{1}, 3 \mathrm{C}_{4}{ }^{2}, 3 \mathrm{C}_{4}{ }^{3}, 6 \mathrm{C}_{2}{ }^{1}, 4 \mathrm{C}_{3}{ }^{1}, 4 \mathrm{C}_{3}{ }^{2} 3 \mathrm{~S}_{4}{ }^{1}, 3 \mathrm{~S}_{4}{ }^{3}, 4 \mathrm{~S}_{6}{ }^{1}, 4 \mathrm{~S}_{6}{ }^{5}, \mathrm{i}, 3 \mathrm{C}_{\mathrm{h}}, 6 \sigma_{\mathrm{d}}$	48	O_{h}

THE END

