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Basics of Quantum Mechanics
- Why Quantum Physics? -

• Classical mechanics (Newton's mechanics) and Maxwell's 
equations (electromagnetics theory) can explain 
MACROSCOPIC phenomena such as motion of billiard balls or 
rockets.

• Quantum mechanics is used to explain microscopic 
phenomena such as photon-atom scattering and flow of the 
electrons in a semiconductor.

• QUANTUM MECHANICS is a collection of postulates based on 
a huge number of experimental observations.

• The differences between the classical and quantum 
mechanics can be understood by examining both
– The classical point of view
– The quantum point of view



Basics of Quantum Mechanics
- Classical Point of View -

• In Newtonian mechanics, the laws are written in terms of PARTICLE 
TRAJECTORIES.  

• A PARTICLE is an indivisible mass point object that has a variety of 
properties that can be measured, which we call observables.  The 
observables specify the state of the particle (position and momentum).

• A SYSTEM is a collection of particles, which interact among themselves via 
internal forces, and can also interact with the outside world via external 
forces. The STATE OF A SYSTEM is a collection of the states of the particles 
that comprise the system.

• All properties of a particle can be known to infinite precision.

• Conclusions:
– TRAJECTORY   state descriptor of Newtonian physics, 
– EVOLUTION OF THE STATE  Use Newton's second law
– PRINCIPLE OF CAUSALITY  Two identical systems with the same initial 

conditions, subject to the same measurement will yield the same result.



Basics of Quantum Mechanics
- The Correspondence Principle -

When Quantum physics is applied to macroscopic systems, it 
must reduce to the classical physics.  Therefore, the nonclassical 
phenomena, such as uncertainty and duality, must become 
undetectable.  Niels Bohr codified this requirement into his 
Correspondence principle:



Basics of Quantum Mechanics
- Particle-Wave Duality -

• Waves as particles:

– Max Plank work on black-body radiation, in which he assumed that the molecules of the 
cavity walls, described using a simple oscillator model, can only exchange energy in 
quantized units.

– 1905 Einstein proposed that the energy in an electromagnetic field is not spread out 
over a spherical wavefront, but instead is localized in individual clumbs - quanta.  Each 
quantum of frequency n travels through space with speed of light, carrying a discrete 
amount of energy  and momentum =photon => used to explain the photoelectric effect, 
later to be confirmed by the x-ray experiments of Compton.

• Particles as waves

– Double-slit experiment, in which instead of using a light source, one uses the electron 
gun.  The electrons are diffracted by the slit and then interfere in the region between 
the diaphragm and the detector.

– Aharonov-Bohm effect
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Basics of Quantum Mechanics
- Heisenberg Uncertainty Principle -• One cannot unambiguously specify the values of 

particle's position and its momentum for a 
microscopic particle, i.e.

• Position and momentum are, therefore, considered 
as incompatible variables.

• The Heisenberg uncertainty principle strikes at the 
very heart of the classical physics => the particle 
trajectory.
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Basics of Quantum Mechanics
- What is Quantum Mechanics? -

• Quantum Mechanics is nothing more but 
linear algebra and Hilbert spaces

• What makes quantum mechanics quantum 
mechanics is the physical interpretation of the 
results that are obtained



Basics of Quantum Mechanics
- First Postulate of Quantum 

Mechanics -
Quantum physicists are interested in all kinds of physical systems 
(photons, conduction electrons in metals and semiconductors, atoms, 
etc.). State of these rather diverse systems are represented by the same 
type of functions  STATE FUNCTIONS.

First postulate of Quantum mechanics:
Every physically-realizable state of the system is described in quantum 
mechanics by a state function  that contains all accessible physical 
information about the system in that state.

– Physically realizable states states that can be studied in laboratory
– Accesible information the information we can extract from the 

wavefunction
– State function function of position, momentum, energy that is spatially 

localized.



Basics of Quantum Mechanics
- Second Postulate of Quantum 

Mechanics -
If a system is in a quantum state represented by a wavefunction , then

is the probability that in a position measurement at time t the particle will 
be detected in the infinitesimal volume dV.

Note:
 position and time probability density

The importance of normalization follows from the Born interpretation of 
the state function as a position probability amplitude. According to the 
second postulate of quantum mechanics, the integrated probability 
density can be interpreted as a probability that in a position measurement 
at time t, we will find the particle anywhere in space. 
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Basics of Quantum Mechanics
- Third Postulate of Quantum 

Mechanics -

Every observable in quantum mechanics is represented by an operator which is used to 

obtain physical information about the observable from the state function.  For an 

observable that is represented in classical physics by a function Q(x,p), the corresponding 

operator is ),( pxQ

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Third Postulate:



Basics of Quantum Mechanics
- More on Operators -

 An operator is an instruction, a symbol which tells us to perform one or more 

mathematical acts on a function, say f(x).  The essential point is that they act on a 

function. 

 Operators act on everything to the right, unless the action is constrained by brackets. 

 Addition and subtraction rule for operators: 

  )()()( 2121 xfQxfQxfQQ
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 The product of two operators implies succesive operation: 

 )()( 2121 xfQQxfQQ


  

 The product of two operators is a third operator: 
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 Two operators commute if they obey the simple operator expression: 
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Basics of Quantum Mechanics
- More on Operators -

The requirement for two operators to be commuting 
operators is a very important one in quantum mechanics and 
it means that we can simultaneously measure the observables 
represented with these two operators. The non-commutivity 
of the position and the momentum operators (the inability to 
simultaneously determine particles position and its 
momentum) is represented with the Heisenberg uncertainty 
principle, which in mathematical form is expressed as:

and can be generalized for any pair of observables.
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Wavefunctions
• Given any set S of system states (mutually 

distinguishable, or not), 

• A quantum state vector can also be translated to 
a wavefunction  : S  C, giving, for each state 
sS, the amplitude (s) of that state.

– When s is another state vector, and the real state is t, 
then (s) is just s†t.

–  is called a wavefunction because its time evolution 
obeys an equation (Schrödinger’s equation) which 
has the form of a wave equation when S ranges over 
a space of positional states.



Schrödinger’s Wave Equation
We have a system with states given by (x,t) where:

– t is a global time coordinate, and

– x describes N/3 particles (p1,…,pN/3) with masses 
(m1,…,mN/3) in a 3-D Euclidean space, 

– where each pi is located at coordinates (x3i, x3i+1, x3i+2), and 

– where particles interact with potential energy function 
V(x,t),

• the wavefunction (x,t) obeys the following (2nd-
order, linear, partial) differential equation:
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Features of the wave equation

• Particles’ momentum state p is encoded 
implicitly by the particle’s wavelength : p=h/

• The energy of any state is given by the frequency 
 of rotation of the wavefunction in the complex 
plane: E=h.

• By simulating this simple equation, one can 
observe basic quantum phenomena such as:

– Interference fringes



The Schrödinger Equation

• The Schrödinger Equation governs the transformation of an 
initial input state to a final output state     . It is a 
prescription for what we want to do to the computer. 

• is a time-dependent Hermitian matrix of size 2n called 
the Hamiltonian

• is a matrix of size 2n called the evolution matrix, 

• Vectors of complex numbers of length 2n

• Tτ is the time-ordering operator
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The Schrödinger Equation

• n is the number of quantum bits (qubits) in the quantum computer

• The function exp is the traditional exponential function, but some 
care must be taken here because the argument is a matrix. 

• The evolution matrix           is the program for the quantum 
computer. Applying this program to the input state produces the 
output state                   ,which gives us a solution to the problem.
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Particle in a 1-Dimensional Box
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V(x)=0 for L>x>0
V(x)=∞ for x≥L, x≤0

Particle in a 1-Dimensional Box
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Classical Physics: The particle can 
exist anywhere in the box and 
follow a path in accordance to 
Newton’s Laws.

Quantum Physics: The particle is 
expressed by a wave function and 
there are certain areas more likely 
to contain the particle within the 
box.
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Time Dependent Schrödinger Equation
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Wave function is dependent on time and 
position function:
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Time Independent Schrödinger Equation

Applying boundary conditions:
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Finding the Wave Function
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Our new wave function:

But what is ‘A’?

Calculating Energy Levels:

Normalizing wave function:
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Variational principle

The complete set of exact eigenfunctions of H define an orthogonal 
complete basis set for the total space of wave functions.

H is Hermitic. Let be a and b two normalized wavefunctions (associated with two different 
values Ea and Eb ). We have therefore (due to  hermiticity)

< a |H| b > = Ea< a | b > 
< a |H| b > = Eb < a | b > 

Wherefrom (Ea - Eb) < a | b > = 0
and since Ea Eb

< a | b > = 0

If so, it is possible to express any function as a linear combination of the 
exact eigenfunctions, i.

Statement 1:

demonstration:

Consequence:



Variational principle

The energy associated with  a function is always above that of the 
eigenfunction of lowest energy: E0.

 is not a eigenfunction; it is associated with an energy <E> that is an average energy (mean 
value)

A mean value is always intermediate relative to extreme:
Greater than the smallest!

<E> > E0

Statement 2:



Mean value

 If 1 and 2 are associated with the same eigenvalue o: 
O(a1 +b2)=o(a1 +b2)

 If not O(a1 +b2)=o1(a1 )+o2(b2)

we define <O> = (a2o1+b2o2)/(a2+b2)

Dirac notations



Variational principle

The energy associated with  a function is always above that of the 
eigenfunction of lowest energy: E0.

a and b are two eigenfunctions

< a |H| = < a | Ea and   |H| b > = Eb | b>
wherefrom < a |H| b > = Ea dab

From statement 1,  is a linear combination of a s 

| a >= Sa ca| a > 
let multiply the left by < a |; this leads to only one term ca= < a | > 

and similarly c*a= <  |a > 

then |  >= Sa < a | > | a > 

Statement 2:



Variational principle

a and b are two eigenfunctions
associated to Ea and   Eb

From statement 1,  is a linear combination of a s 

|  >= Sa ca| a > 

then

<  |  > =Sa,b ca < a |b> cb

<  |  > = Sa, ca
2 < a |a> = Sa, ca

2 = 1

Statement 2, normalization:
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<  |H |  > = Sa,b ca < a |H | b > c b

<  |H |  > = Sa,b Ea < a | b > c b

<  |H |  > = Sa,b Ea ca dab c b

<  |H |  > = Sa,Ea ca
2 

> Sa,E0 ca
2 = E0

E     > E0

Variational principle

Statement 2, Demonstration:

An non-exact solution has always a higher energy than the lowest exact solution



Operator

• A rule that transforms a given function into 
another function 
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A New mathematical tool: 

Wave functions and Operators

Each particle may be described by a wave function Y(x,y,z,t), real or complex,

having a single value when position (x,y,z) and time (t) are defined.

If it is not time-dependent, it is called stationary.

The expression Y=Aei(pr-Et) does not represent one molecule but a flow of particles: 

a plane wave
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Operators associated to physical quantities

We cannot use functions (otherwise we would end with classical mechanics)

Any physical quantity is associated with an operator.

An operator O is “the recipe to transform Y into Y’  ”

We write:         O Y = Y’ 

If O Y = oY (o is a number, meaning that O does not modify Y, just a scaling 

factor), we say that Y is an eigenfunction of O and o is the eigenvalue.

We have solved the wave equation O Y = oY by finding simultaneously Y and o 

that satisfy the equation.

o is the measure of O for the particle in the state described by Y.



Operator

• Example. Apply the following operators on the 
given functions:

• (a) Operator d/dx and function x2.

• (b) Operator d2/dx2 and function 4x2.

• (c) Operator (∂/∂y)x and function xy2.

• (d) Operator −iћd/dx and function exp(−ikx).

• (e) Operator −ћ2d2/dx2 and function exp(−ikx).



Identifying the operators



Linearity

The operators are linear:

O (a1+ b1) = O (a1 ) + O( b1) 

35



Normalization

An eigenfunction remains an eigenfunction 
when multiplied by a constant

O()= o()  thus  it is always possible to 
normalize a finite function 

36

Dirac notations    <YIY>    



Hermitian Operator

• Hermitian operators have two properties 
that forms the basis of quantum mechanics

(i) Eigen value of a Hermitian operator are real.

(ii) Eigenfunctions of Hermitian operators are 
orthogonal to each other or can be made 
orthogonal by taking linear combinations of 
them.



Hermitian operator

     behaved  wellare g and f if ;dx f)Âg(dxgÂf **

satisfies A operator hermitianA ˆ



• Prove Operator x is Hermitian.
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Hermitian operator or not ??
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Eigen function and eigen value

  ikxexf 

Is it eigen function of momentum operator ?

What is eigen value ?



Eigenvalue equation

Eigenvalue equation

(Operator)(function) = (constant factor)*(same function)

Example:  eikx is an eigenfunction of a operator P̂x = -ih

x

-i2   k2eikx= h

F(x) = eikx

h

x

eikx= -i

h k2eikx= Thus eikx is an eigenfunction



Significance of commutation rules

• The eigenvalue of a Hermitian operator is real.

• A real eigenvalue means that the physical quantity for which the operator 

stands for can be measured experimentally.

• The eigenvalues of two commuting operators can be computed by using 

the common set of eigenfunctions.

If the two operators commute, then it is possible to measure the 

simultaneously the precise value of both the physical quantities for 

which the operators stand for.

Question: Find commutator of the operators x and px

Is it expected to be a non-zero or zero quantity? 

Hint: Heisenberg Uncertainty Principle



Commute or not ??

• Operator x and d/dx
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Mean value theorem
Expectation value in general:

The fourth postulates states what will be measured when large number 

of identical systems are interrogated one time. Only after large number 

of measurements will it converge to <a>.

In QM, the act of the measurement causes the system to “collapse” into 

a single eigenstate and in the absence of an external perturbation it will 

remain in that eigenstate.



Mean value

• If 1 and 2 are associated with the same 
eigenvalue o: O(a1 +b2)=o(a1 +b2)

• If not O(a1 +b2)=o1(a1 )+o2(b2)

we define ō = (a2o1+b2o2)/(a2+b2)

48

Dirac notations



Sum, product and commutation of 
operators

(A+B)=A+B          

(AB)=AB

y1=e4x y2=x2 y3=1/x

d/dx 4 -- --

x3 3 3 3

x d/dx -- 2 -1

49

operators

wavefunctions

eigenvalues



Sum, product and commutation of operators

y1=e4x y2=x2 y3=1/x

A = d/dx 4 -- --

B = x3 3 3 3

C= x d/dx -- 2 -1

50

not compatible

operators

[A,C]=AC-CA0

[A,B]=AB-BA=0

[B,C]=BC-CB=0



x and d/dx do not commute, are incompatible

51

Translation and inversion do not commute, are incompatible

A T(A)
I(T(A))

I(A) AT(I(A))

vecteur de translation

O

Centre d'inversion

O

Translation vector

Inversion center



Momentum and Energy Operators

52

Remember during this chapter



Stationary state  E=constant

53

Remember for 3 slides after



Kinetic energy
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Classical                               quantum operator

In 3D : 

Calling                                                                    the laplacian  

Pierre Simon, Marquis de Laplace

(1749 -1827)



Correspondence principle
angular momentum
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Classical expression                                          Quantum expression

lZ= xpy-ypx
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Particle in a 3-D box



Question: An electron is in 1D box of 1nm length. What is 
the probability of locating the electron between x=0 and 
x=0.2nm in its lowest energy state?



Question: An electron is in 1D box of 1nm length. What is the 

probability of locating the electron between x=0 and x=0.2nm 

in its lowest energy state?

Solution:



Classical Harmonic Oscillator

Let us consider a particle of mass ‘m’ attached to a spring

At the beginning at t = o the particle is at equilibrium, that is no force is working at it ,
F = 0

In general, according to Hooke’s Law:

F = -k x 
i.e. the force proportional to displacement and pointing in opposite direction and where k is 
the force constant and x is the displacement.

Classically, a harmonic oscillator is subject to Hooke's law.



Newton's second law says 

F = ma  
Therefore,

2

2

d x
- k x = m  .

dt

2

2

d x
m  + k x = 0 .

dt

The solution to this differential equation is of the form:

where the  angular frequency of oscillation is ‘ω’ in radians per second

Also,                                                  ω = 2πʋ,   where ‘ʋ’ is frequency of oscillation

)sin()( wtAtx 



The parabolic potential energy V = ½ kx2 of a harmonic oscillator, where x is the 
displacement from equilibrium. 

The narrowness of the curve depends on the force constant k: the larger the value of k, the 
narrower the well.
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Kinetic energy
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Energy in Classical oscillator

E = T + V = ½  kA2 …….. How ????

Total energy is constant i.e. harmonic oscillator is a conservative system





Quantum Harmonic Oscillator

In classical physics, the Hamiltonian for a harmonic oscillator is given by:

where μ denotes the reduced mass:

The quantum mechanical harmonic oscillator is obtained by replacing the classical
position and momentum by the corresponding quantum mechanical operators.



Solution of Schrӧdinger Equation for Quantum Harmonic Oscillator



It is only possible if







Quantum Mechanical Linear Harmonic Oscillator 

It is interesting to calculate probabilities Pn(x) for finding a 

harmonically oscillating particle with energy En at x; it is easier 

to work with the coordinate q; for n=0 we have: 
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Wave functions of the harmonic oscillator



Energy levels are equally spaced  with 
separation of hʋ

Energy of ground state is not zero, 
unlike in case of classical harmonic 
oscillator

Energy of ground state is called zero 
point energy 
 E0 = hʋ/2

Zero point energy is in accordance with 
Heisenberg uncertainty principle

Show harmonic oscillator 
eigenfunctions obey the 
uncertainty principle ????







∆x ∆p=ħ/2



Angular Momentum Operator

• L is important to us because electrons are 

constantly changing direction (turning) when they 

are confined to atoms and molecules

• L is a vector operator in quantum mechanics

• Lx : operator for projection of L on a x-axis

• Ly : operator for projection of L on a y-axis

• Lz : operator for projection of L on a z-axis



Angular Momentum Operator

• Just for concreteness L is written in terms of 

position and momentum operators as:

with



Angular Momentum Operators

• Ideally we’d like to know L BUT…

• Lx , Ly and Lz don’t commute!

• By Heisenberg, we can’t measure them 

simultaneously, so we can’t know exactly where and 

what L is!

One day this will be a lab…



Angular Momentum Operators

• does commute with each of                         

,     and     individually

• is the length of L squared.

• has the simplest mathematical form

• So let’s pick the z-axis as our “reference” axis



Angular Momentum Operators

• So we’ve decided that we will use      and      as a 

substitute for

• Because we can simultaneously measure:

• L2 the length of L squared

• Lz the projection of L on the z-axis

L
z

y

x

Lz

Ly

Lx

BUT we can’t know Lx, Ly and Lz

simultaneously!

We’ve chosen to know only Lz (and L2)



Angular Momentum Operators

• So we’ve decided that we will use      and       as a 

substitute for

• Because we can simultaneously measure:

• L2 the length of L squared

• Lz the projection of L on the z-axis

L

z

y

x

Lz

can be anywhere in a 

cone for a given Lz

For different L2’s we’ll 

have different Lz’s

So what are the possible 

and eigenvalues 

and what are their eigen-

functions?
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Total Angular Momentum

 The spin-orbit interaction couples the orbital (L) 
and spin (S) angular momentum to form the 
total angular momentum (J)
 The internal magnetic field is determined by L and 

this acts on the spin magnetic dipole of the electron 
determined by S so the two angular momenta are not 
independent

 The new “good” quantum numbers of the 
hydrogen atom are n, l, s, j, mj

SLJ



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Total Angular Momentum

 Coupling of L and S to form J

 L and S precess around J

 J precesses around the z axis


