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A B S T R A C T

Differential pulse voltammetry (DPV) based electrochemical sensor dedicated for the determination of Cu(II)
ion concentration is reported in this research. Sensor was based on electrochemically synthesized polyani-
line (PANI) and single walled carbon nanotubes (SWNTs) nanocomposite (PANI/SWNTs), which was ad-
ditionally functionalized by ethylenediaminetetraacetic acid (EDTA) in order to get structure (EDTA-PANI/
SWNTs) with advanced selectivity towards Cu(II) ion. Synthesis of PANI/SWNTs nanocomposite was per-
formed by potential cycling, dodecyl benzene sulphonic acid sodium salt (DBSA) was used as a surfactant
during the synthesis of PANI/SWNTs nanocomposite to get a uniform suspension of SWNTs at room tem-
perature. In the next step, PANI/SWNTs nanocomposite was further modified by the EDTA solution contain-
ing 1-ethyl-3(3-(dimethylamino)propyl)-carbodiimide (EDC) as activating agent, which is activating carboxyl
groups, utilizing dip coating technique at room temperature. Differential pulse voltammetry (DPV) technique
was applied for the electrochemical detection of Cu(II) ion. DPV based response of EDTA-PANI/SWNTs
structure towards Cu(II) ion was investigated. Analytical signals reveal that EDTA-PANI/SWNTs structure is
suitable for selective determination of Cu(II) ion in the presence of interfering Pb(II), Cd(II), Ni(II) and Co(II)
ions.

© 2017.

1. Introduction

Sensitive and selective detection of heavy metal ions is very im-
portant and challenging research area. Among many metal ions Cu(II)
shows essentiality as micronutrient element, it also has significant
importance in biochemistry and metabolic processes of many liv-
ing organisms [1,2]. Deficiency of Cu(II) may be responsible for
the anemia, ischemic heart diseases, bone demineralization, cardio-
vascular effects, skin diseases etc. [3]. But recently, due to conta-
mination instead of being an essential element, excessive doses of
Cu(II) ion become threatening life issue for the living organisms [4].
Therefore, numerous methods and technologies have been developed
for the sensitive and selective detection of metal ions. Most popular
and well-known techniques are liquid chromatography, electrophore-
sis, spectrophotometry, solid-phase extraction coupled with atomic
absorption spectroscopy, atomic emission spectroscopy, and induc
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tively coupled plasma mass spectrometry [5–10] etc. However these
methods are still expensive, time-consuming and require experienced
staff for the handling of these instruments.

Therefore, electrochemical techniques for the detection of metal
ions are grasping the attention of researchers due to their advantages
such as simple and cost effective instrumentation and fast analyti-
cal response [11–13]. In addition, the complexation by organic mol-
ecules containing coordinating site [1,14] and chemically modified
electrodes [15–20] could be applied in order to increase both selectiv-
ity and sensitivity of electrochemical methods. The desired sensitiv-
ity of chemical sensors can be achieved by a modification of electrode
surfaces with suitable chemical reagents such as metals, semiconduc-
tors, carbon based materials and polymeric materials [21–24]. Chelat-
ing ligands are also used as metal ion complexing agents [25–29].

The modification of electrode surfaces with nanocomposite ma-
terials such as carbon nanotubes and conducting polymer nanocom-
posite can increase environmental stability and electrical conductivity
[30–33]. Polyaniline and their derivatives are used in chemical sen-
sors [34–38]. Conducting polymers (CPs) are also very useful materi-
als for modification of electrodes due to their conductivity, easy syn-
thesis, low resistance [39], high accessible surface area, environmen-
tal stability etc. [40,41]. These enlisted ideal properties as well as su

https://doi.org/10.1016/j.snb.2017.12.160
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perior electrical and structural properties, better adhesion ability of
CPs makes them most considerable material for the development of
sensors, especially for the detection of metal ions [42,43]. However,
due to continuous charge, discharge process during repeated interpola-
tion as well as depletion of ions considerable volume change occurs in
the CPs, which is responsible for the reduction of mechanical stability
for various applications [44,45]. Among different types of nanomate-
rials, carbon nanotubes are used as preferred materials due to their ex-
cellent electrical properties, better charge transfer channels, and high
surface to volume ratio etc. [46–50]. In spite of admirable properties
of CNTs, they are hydrophobic in nature and pristine CNTs can lack
functional binding groups on their surfaces which lead towards the
weak response to metal ions [51]. Surface modification of CNTs with
various functional groups can tackle these issues. Chelating ligands
are binding central metal ion, which can be applied in order to form
a complex structures. Chelating ligands form very stable complexes
with the most of the transition metals. Thus, chelating ligand modified
organic materials; particularly conducting polymers can be used for
the determination of heavy metal ions by adjusting different values of
pH [52]. M. A. Rahman et al. [29] have reported EDTA-CPME elec-
trode, which was fabricated by polymerization of 3‘, 4‘-diamino-2,
2‘; 5‘2“-terthiophene monomer on glassy carbon electrode by utiliz-
ing the electrochemical technique. The CPME was further function-
alized by immersing CPME in EDTA solution containing additional
crosslinking agent. The electrochemical response of EDTA modified
CPME was successfully tested for various metal ions viz. Co, Ni, Zn,
Cd, Cu, Fe, Pb & Hg. There are several reports for the detection of
metal ions using conducting polymers, carbon nanotubes and chelat-
ing ligand complexes with conducting polymers [53–58].

Conducting polymers and carbon nanotubes have their own ad-
vantages and disadvantages in the detection of heavy metals, we in-
tended to exploit the advantageous properties of these materials to fab-
ricate polyaniline/carbon nanotube nanocomposite with good conduc-
tivity and worthy water stability. Therefore, the effective combination
of these two materials will not only make full use of respective advan-
tages but also be vital for advanced efficiency.

Present investigation, is focused on the synthesis of polyaniline
and single walled carbon nanotubes based composite structure and its
applicability for monitoring of Cu(II) ion concentration. In this inves-
tigation we have carried out electrochemical synthesis of polyaniline
and single walled carbon nanotubes and further it was modified by
chelating ligand-EDTA.

2. Materials and methods

2.1. Reagents

Aniline of reagent grade was purchased from Sigma Aldrich (Ban-
galore, India); Dodecyl benzene sulphonic acid sodium salt (DBSA)
was purchased from Kemphasol (Bombay, India) and it was used
as a surfactant and the organic solvent to form a fine suspension
of SWNTs. H2SO4 of HPLC grade obtained from Rankem (Bom-
bay, India), SWNTs functionalized with carboxyl groups (-COOH)
were purchased from Nanoshel LLC. Ethylenediaminetetraacetic acid
(EDTA) was puchased from Fisher Scientific, 1-ethyl-3(3(dimethy-
lamino)propyl)-carbodiimide (EDC) was procured from Sigma
Aldrich (Bangalore, India). Phosphate buffer with pH 7, and other
chemicals were reagent grade quality and they were used as received.
Stainless steel electrode (SSE) type 304, 0.5mm thick and area
1× 1cm2 was purchased from SSD Enterprises (Jalna, India). An ac

etate buffer solution was prepared by adjusting 0.1M acetic acid to the
desired pH by adding 0.1M sodium acetate. Other solvents and chem-
icals were of analytical grade.

2.2. Methods

All the electrochemical measurements were carried out in a single
compartment cell containing three electrode system with a CHI660C
electrochemical workstation from CH Instruments (Texas, USA).
Fourier transform infrared (FTIR) spectrum of the sample was
recorded by FTIR spectrophotometer Bruker-Alpha from Bruker
(Germany). Atomic force microscope Park system XE-7 (South Ko-
rea) was used for AFM visualization in non-contact mode (NC-AFM)
to examine the surface morphology of the PANI/SWNTs and
EDTA-PANI/SWNTs. All measurements were carried out at room
temperature and under an atmospheric environment.

2.3. Preparation of PANI/SWNTs nanocomposite

Electrochemical synthesis of PANI/SWNTs nanocomposite was
carried out in solution containing 20wt.% of SWNTs with respect
to aniline monomer. Prior to use, SWNTs were mixed with 1ml of
DBSA at SWNTs to DBSA volume ratio of 1:10, in order to homog-
enize the solution and to disperse SWNTs bundles uniformly SWNTs
dispersion in DSBA (SWNTs + DSBA) was ultra-sonicated for 4h at
room temperature. Then 0.25M emulsion of aniline monomer in 0.5M
solution of H2SO4 (Aniline + H2SO4) was prepared and in order to ho-
mogenize it was stirred for 20min. Then Aniline + H2SO4 was further
transferred to the flask containing the ultra-sonicated suspension of
SWNTs. The reaction mixture of (Aniline + H2SO4 + SWNTs) was me-
chanically stirred for 20min at room temperature to form a uniform
electrolyte of PANI/SWNTs nanocomposite. Prior to the electrochem-
ical deposition of PANI/SWNTs layer, SSE was thoroughly cleaned
with piranha solution, acetone and then air dried. SSE with 1cm2 area
was used for electrochemical deposition of the nanocomposite. PANI/
SWNTs nanocomposite based layer was deposited on a SSE by 20
potential cycles between +0.1 and +1.0 V at a potential sweep rate
of 0.1V/s. Three electrode system with a SSE based working elec-
trode (geometrical area of 1cm2), Platinum (Pt) plate as a counter
electrode and Ag/AgCl electrode in saturated KCl (Ag/AgCl(sat.KCl))
as a reference electrode was used for electrochemical deposition of
PANI/SWNTs layer. The electrochemical formation of PANI/SWNTs
nanocomposite was observed as a dark green colored coating on SSE
electrode. After the deposition of PANI/SWNTs layer, the SSE was
washed with reagent grade distilled water and then it was air dried at
room temperature.

2.4. Modification of PANI/SWNTs nanocomposite by EDTA

Further, modification of PANI/SWNTs nanocomposite with
EDTA was performed using dip-coating technique. In order to form
covalent bonds between the carboxyl groups of EDTA with amino
groups of PANI/SWNTs nanocomposite the PANI/SWNTs nanocom-
posite film was immersed in a phosphate buffer, pH 7, containing
0.1M of EDC, which served as crosslinker and 0.01M of EDTA
for the time period of 12h. the modification was conducted under
continuous stirring at room temperature. The resulting EDTA modi-
fied PANI/SWNTs nanocomposite modified electrode (EDTA-PANI/
SWNTs/SSE) was further rinsed carefully with distilled water and
air-dried.
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2.5. Procedure for electrochemical detection

The electrochemical determination of Cu(II) ions was performed in
40ml electrochemical cell using three-electrode setup at room temper-
ature, acetate buffer solution with pH 4.5, was used for the preparation
of Cu(II) ion-containing solution and 0.5M H2SO4 was used as blank
electrolyte solution for the stripping of Cu(II) ions. The EDTA-PANI/
SWNTs/SSE was used as a working electrode, (Ag/AgCl(sat.KCl)) as a
reference electrode and Pt plate as a counter electrode. Before differ-
ential pulse voltammetry (DPV) experiment, a EDTA-PANI/SWNTs/
SSE was dipped into the electrolyte containing different concentra-
tions (from 2mM to 4μM), of Cu(II) ion under constant stirring
to allow trace amounts of Cu(II) ion to be pre-concentrated at the
EDTA-PANI/SWNTs/SSE surface. After the pre-concentration step
DPV detection step by potential sweep from −0.35V to 0.00V (with
a potential step increment of 0.004V, amplitude of 0.05V, and pulse
period of 0.5 s) was carried out for the determination of Cu(II) ion us-
ing EDTA-PANI/SWNTs/SSE surface.

3. Results and discussion

3.1. Electrochemical deposition and characterization of PANI/
SWNTs and EDTA-PANI/SWNTs nanocomposite

Fig. 1a shows the typical cyclic voltammogram recorded during
potential cycling based synthesis of PANI/SWNTs nanocomposite.
Continuous potential cycling leads to the formation of a uniform dark
green colored coating on the SSE. As it is seen from the voltam-
mogram the oxidation of aniline monomer starts at 0.2V. The CV
recorded during a continuous scan shows that both oxidation and re-
duction current are increasing by each successive cycle of the voltam-
mogram, which confirms that electrically conducting nature of formed
PANI/SWNTs nanocomposite. The thickness of the film increases by
increasing number of potential cycles. The voltammogram of PANI/
SWNTs nanocomposite shows clear reduction peaks, which indicate
the tendency of material to acquire electrons at low electrode poten-
tial. Fig. 1b (curve 1), represents CV registered using PANI/SWNTs/
SSE and Fig. 1b (curve 2) using EDTA-PANI/SWNTs/SSE electrodes
in 0.5M H2SO4 based electrolyte. It is clearly observable that af-
ter the modification of PANI/SWNTs/SSE electrode by EDTA, the
electrical capacitance of EDTA-PANI/SWNTs/SSE, which can be
estimated from voltammogram, is getting decreased. On the other

hand PANI/SWNTs/SSE shows higher current density compared to
that of EDTA-PANI/SWNTs. The decrease in peak current of the
EDTA modified nanocomposite exhibits the dominant effect of the
electrostatic interactions, which reflects on the current density of
nanocomposite. These results can be also attributed to the formation
of strong complex and chelating interaction between nanocomposite
structure and EDTA molecules.

3.2. FTIR study of the PANI/SWNTs and EDTA-PANI/SWNTs
nanocomposite

Fig. 2 shows FTIR spectra of PANI/SWNTs nanocomposite (Fig.
2a) and EDTA-PANI/SWNTs nanocomposite (Fig. 2b). The band at
837cm−1 is attributed to the N H out of plane bending in the PANI/
SWNTs nanocomposite structure. The bands around 1425cm−1 and
1637cm−1 are characteristic for the emeraldine salt form of PANI
in PANI/SWNTs nanocomposite. FTIR spectrum of PANI/SWNTs
nanocomposite shows the appearance of the characteristic band at
1037cm−1, which confirms high concentration of SWNTs in PANI/
SWNTs nanocomposite structure [59]. This band also represents
charge transfer and confirms interaction between SWNTs and a
quinoid ring of PANI [59]. The C N stretching vibrations of aro-
matic groups in the PANI/SWNTs nanocomposite and EDTA-PANI/
SWNTs structures were observed at 1192cm−1 and 1264cm−1 respec-
tively. Band at 1720cm−1 for C O and 3600cm−1 for O H were
observed in EDTA-PANI/SWNTs structure, which was initially ab-
sent in the FTIR spectrum of unmodified PANI/SWNTs nanocompos-
ite. It also confirms that the EDTA moieties were covalently attached
to the surface of PANI/SWNTs nanocomposite.

3.3. Morphological investigations of PANI/SWNTs and EDTA-PANI/
SWNTs nanocomposite

The morphological investigations of PANI/SWNTs and
EDTA-PANI/SWNTs nanocomposite were performed using AFM.
Fig. 3a shows AFM images of PANI/SWNTs nanocomposite and Fig.
3b represents AFM images of EDTA-PANI/SWNTs nanocomposite.
The AFM image represented in Fig. 3a clearly shows that the PANI
is formed on the surface of SWNTs, resulted in forming a nanocom-
posite layer where SWNTs acts as the backbone. The nanocompos-
ite structure shows rod-like structures distributed in an irregular man-
ner with more rigid features compared to that of EDTA-PANI/SWNTs
(Fig. 3b) in which the coating of EDTA dominates the rod-like struc

Fig. 1. Cyclic Voltammograms (a) recorded during the deposition of PANI/SWNT nanocomposite layer on SSE (b) PANI/SWNTs nanocomposite (curve 1) and EDTA-PANI/
SWNTs nanocomposite (curve 2).
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Fig. 2. FTIR spectra of (a) PANI/SWNTs nanocomposite, (b) EDTA-PANI/SWNTs
nanocomposite structure.

ture. Fig. 3b shows AFM image of EDTA-PANI/SWNTs with ag-
glomerated form due to the bonding of EDTA molecules on nanocom-
posite surface. EDTA molecules occupy all space available on the
PANI/SWNTs nanocomposite. Fig. 3b confirms the accumulation of
EDTA on the nanocomposite surface.

Thus, the AFM images are confirming that, in nanocomposite for-
mation, SWNTs are getting covered with PANI layer, which further
acts as a conducting backbone of nanocomposite. The π-π* stacking

between conducting polymer and SWNTs must have lead towards the
enhancement of the charge carrying capacity, which results in faster
signal transduction that will be beneficial for the faster charge trans-
fer and ultimately fast sensor response. In PANI/SWNTs nanocom-
posite SWNTs will not expose directly to the analyte thereby, over-
coming the hurdle of hydrophobic nature of SWNTs, lower stability
in the harsh environment and contamination by the analyte. EDTA
will be responsible for increased response towards metal ions, and the
advance of EDTA-PANI/SWNTs-based sensor selectively by adjust-
ment of pH.

Fig. 4a shows the comparative single scan image of the (Fig. 4a,
curve 1) PANI/SWNTs and (Fig. 4a, curve 2) EDTA-PANI/SWNTs.
EDTA-PANI/SWNTs layer is more complex in comparison to PANI/
SWNTs layer, which confirms that the PANI/SWNTs layer become
rougher after the modification by EDTA, which could be easily re-
vealed by Fig. 4b via the observed parameters expressed by Max(nm)
is the maximum roughness profile, Rpv Peak-to-Valley Roughness,
Ra the average roughness of the absolute value of the profile height,
Rz ten point average roughness, Skewness (RsK) the third moment
of profile amplitude probability density function used to measure the
profile symmetry about mean line, Kurtosis (Rku) fourth moment of
profile amplitude probability function and corresponds to a measure
of surface sharpness, root mean-square factor Rq [RMS], the value of

Fig. 3. AFM image of (a) PANI/SWNTs nanocomposite, (b) EDTA-PANI/SWNTs nanocomposite.

Fig. 4. (a) Single scan by AFM of PANI/SWNTs layer (curve 1) and EDTA-PANI/SWNTs nanocomposite (curve 2), (b) Roughness parameters of PANI/SWNTs and EDTA-PANI/
SWNTs nanocomposite.
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the highest single peak above the center line [Rp], the mean levelling
depth [Rpm], the deepest valley below the centre line [Rv].

3.4. Comparative study of bare PANI/SWNTs and EDTA modified
−PANI/SWNTs nanocomposite electrodes towards Cu(II) ion sensing

In order to study the impact EDTA on sensing, the comparative
study sensing abilities of bare PANI/SWNTs/SSE and EDTA modi-
fied PANI/SWNTs/SSE for the determination of Cu(II) ion concentra-
tion was investigated. The bare PANI/SWNTs/SSE and EDTA mod-
ified PANI/SWNTs/SSE were incubated in the analyte solution con-
taining 2mM of Cu(II) ions in an acetate buffer solution, pH 4.5.
The EDTA modified PANI/SWNTs/SSE electrode exhibits significant
DPV peak response for Cu(II) ions, however, bare PANI/SWNTs/SSE
electrode exhibits almost negligible response (Fig. 5). The better re-
sponse was observed for EDTA-PANI/SWNTs/SSE due to selective
chelation ability of EDTA molecules towards Cu(II) ions.

Fig. 5. DPV based response of PANI/SWNTs and EDTA-PANI/SWNTs towards 2mM
of Cu(II) ions followed by stripping with DPV technique in 0.5M H2SO4.

3.5. Electrochemical response of PANI/SWNTs-EDTA towards Cu(II)
ion

Interaction of analyte with EDTA-PANI/SWNTs/SSE was studied
by electrochemical DPV technique at 2mM–4μM Cu(II) ion concen-
trations. The metal ions were collected on the surface of EDTA-PANI/
SWNTs nanocomposite by simply immersing EDTA-PANI/SWNTs/
SSE into the acetate buffer, pH 4.5, containing Cu(II) ions by vary-
ing incubation time from 10min to 1min without applying electrode
potential, which is mostly used in accumulation step of DPV exper-
iment for advanced accumulation of metal ions. Elimination of addi-
tional electrode potential protected the sensing EDTA-PANI/SWNTs
from contamination and damaging of the surface. Clear anodic DPV
peaks were obtained for different concentrations of Cu(II) ions. The
voltammograms along with a standard addition plot of metal ions con-
centration versus peak current are shown in Fig. 6a.

The DPV peak currents registered during Cu(II) ion determination
over the potential range between −0.30V to −0.05V. DPV voltam-
mograms for different Cu(II) ion concentrations determined by
EDTA-PANI/SWNTs/SSE are presented in Fig. 6a. The dotted line
(Fig. 6a) represents the reference curve recorded for blank solution
without Cu(II) ions.

Fig. 6b represents the dependences of concentration of Cu(II) ions
on the analytical signals, it can be approximated by hyperbolic func-
tion; y= a-b/(1+ c × x)^(1/d) with parameters, which are represented in
Table 1. The approximation with respect to concentration of Cu(II) ion
with hyperbolic function measure for very broad concentration region,
however in shorter region to simplify calculation of Cu(II) concentra-
tion. The limit of detections (LODs) for Cu(II) ion was calculated us-
ing following formula:

Fig. 6. (a) Differential pulse voltammograms of EDTA-PANI/SWNTs/SSE registered in 0.5M H2SO4 at different Cu(II) ion concentrations of 4μM, 10μM, 1× 102 μM, 4× 102 μM,
6× 102 μM, 1mM, and 2mM, 2× 102 μM, 30μM, respectively (b) DPV peak currents plotted against Cu(II) concentrations, respectively; approximated by hyperbolic equation y= a-b/
(1+ c × x)^(1/d). (c) DPV peak currents plotted against Cu(II) concentrations in shorter concentration diapason, approximated by hyperbolic equation y= a-b/(1+ c × x)^(1/d).

LOD = 3.3× (standard deviation of the regression line
(σ))/Slope(S)
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Table 1
Represents corresponding parameters of applied hyperbolic equation y= a-b/(
1+ c × x)^(1/d). DPV was performed in 0.5M H2SO4 based supporting electrolyte.

Model Hyperbola Gen
Equation y= a-b(1 + c*X)^(1/d)
Reduced Chi-Sqr. 2.00453E-4
Adj. R-Square 0.97185

Value Standard Error
A 0.04708 0.15393
B −0.01831 10.86388
C 256334.34977 6.89194E8
D −4.54881 3.04121

The calculated value of limit of detection (LOD) for Cu(II) was
1.4μM and the calculated value of sensitivity from slope of the linear
calibration curve was 189mA/μM.

3.6. Selective determination of Cu(II) ion in the presence of
interfering Pb(II), Cd(II), Ni(II), Co(II) ions

Fig. 7 shows DPVs of EDTA-PANI/SWNTs/SSE in acetic acid
buffer solution, pH 4, containing Cu(II) and Pb(II) ions. The
EDTA-PANI/SWNTs/SSE was immersed in a solution containing
2mM/L of Pb(II), Cd(II), Ni(II), Co(II), Cu(II) ions for 10min. The
DPV plot shows clear anodic peaks only for Cu(II) and Pb(II). EDTA
is also sensitive for Pb(II) ions at the pH of 4.9. Herein, we have
pre-concentrated Cu(II) ions in acetate buffer solution of pH 4.5 which
is closer to the accumulation pH of Pb(II) ions. However,
EDTA-PANI/SWNTs/SSE showed some sensitivity towards Pb(II)
ions, but without significant interference on the determination of
Cu(II) ion determination. However, no DPV peaks were observed
for Cd(II), Ni(II), Co(II) ions, which confirms good selectivity of
EDTA-PANI/SWNTs/SSE for Cu(II) ion.

As listed in Table 2, spectroscopic and colorimetric techniques are
often used for the determination of metal ions. However, these tech-
niques have several limitations in their regular use. While electro-
chemical techniques are less time consuming, easy to handle and still
accurate enough. In present investigation the EDTA-PANI/SWNTs
nanocomposite shows good DPV-based response with better sensitiv-
ity and selectivity towards Cu(II) ions.

Fig. 7. DPV registered during the determination of 2mM of Cu(II) ion in the presence
of 2mM Pb(II), Cd(II), Ni(II) and Co(II) ions in 0.5M H2SO4.

Table 2
Review of some analytical systems for Cu(II) ion determination.

Sr.
No. Sensing Material

Detection
limit

Detection
technique Ref.

01 Alkyl-terminated porous silicon
nanoparticles

4μM Spectroscopic [60]

02 Glycine on Hydrazine-Adsorbed
Gold Nanoparticles

2μM Raman
Spectroscopy

[61]

04 Peptide immobilized gold
nanoparticles

10μM Colorimetric [62]

05 water-soluble polymer containing
pendant rhodamine units

20μM Spectroscopy [63]

06 Protein 0.1mg Spectroscopy [64]
07 Biosynthesized silver nanoparticles 20μM Spectroscopy [65]
08 Copper-silver RF sputtered thin film ∼10μM Potentiometric [66]
09 Polyethyleneimine 2μM Spectroscopy [67]
10 Polydopamine 1nM Spectroscopy [68]

4. Conclusions

Bare CNTs have no specific affinity towards metal ions due to the
absence of functional groups, but here described composite structure
based on PANI, SWNTs and EDTA is suitable for Cu(II) ion deter-
mination, CNTs enables faster transfer of electrical signal due to its
electric conductivity and polymeric layer of PANI provides immobi-
lization of PANI/SWNTs composite on the metal sensor surface. In
this research electrochemical synthesis of PANI/SWNTs nanocom-
posite and further modification by EDTA was successfully carried
out. An electrochemical, spectroscopic and morphological character-
ization of PANI/SWNTs and EDTA-PANI/SWNTs confirmed some
chemical and morphological differences between PANI/SWNTs and
EDTA-PANI/SWNTs nanocomposite. To the best of our knowledge,
there are no reports on heavy metal ion detection by nanocomposite
based on conducting polymer and carbon nanotubes, which in our re-
search was further modified with EDTA. EDTA is serving as agent,
which is providing advanced selectivity and sensitivity towards metal
ions due to its chelation ability. Therefore during this research de-
signed EDTA-PANI/SWNTs/SSE showed good sensitivity and selec-
tivity towards Cu(II) ions.
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