ATF 224 - Noise and Vibration

(02 credits – 50 marks)

Learning Objectives:

The course should enable students:

- 1. Understand the characteristics and Sources of noise and vibrations in a vehicle.
- 2. Understand the environmental noise management system.

Learning Outcomes:

After completion of the course, students are expected to be able to:

- 1. Explain vehicle noise and vibration level measurement techniques.
- 2. Identify causes and remedies for vibrations.
- 3. Carry out troubleshooting and maintenance to control noise and vibration in a vehicle.

Course Content:

Module –I: Noise:

Noise characteristics, Sources of noise, noise level measurement techniques, vehicular noise level, engine noise, transmission noise, brake squeal, structural noise, noise in auxiliaries, wind noises etc.

Module –II: Noise Testing & Noise Control:

Mechanization of noise generation, noise control methodologies, noise control measures, environmental noise management. Road vehicle noise standards

Module –III: Vibration:

Introduction, Single degree of freedom, damped, forced vibration, Multi degree of freedom vibration, modes, nodes, Holzer's method. Multi degree of freedom of vibration, matrix method, eigen values and vectors, natural frequencies & modes, model analysis, numerical methods for solution, Lagrange's equation for problem formulation, Two degree of freedom system, co-ordinate, coupling, solution Vibration under periodic force, use of Fourier series, Vibration of continuous systems, transverse vibration of cable, bar, torsion vibration of shaft, Rayliegh's method, Reyliegh-Ritz method

Module –IV: Vibration control

Balancing of reciprocating & rotating masses, controlling natural frequencies, vibration isolation, vibration absorbers, Basics of non-linear vibration, causes of non-linearity, formulation, solution methods, iterative, graphical, methods of isoclines, stability of equilibrium state, types of singularity, limits cycle. Basic vibration measuring set up, brief introduction to experimental model analysis

(04 Hours)

(04 Hours)

(09 Hours)

(07 Hours)

Module -V: Assignments / seminars / case studies on Module -I to Module - IV (6 Hrs)

References:

- 1. Mechanical Vibration S. S. Rao, New Age International (P) Ltd., New Delhi, ISBN: 9780201065510
- 2. Engineering Mechanics Static & Dynamics I. H. Shames, ISBN-10 8177581236
- Mechanical Vibration Analysis, P. Srinivasan, Tata McGraw Hill Pub. New Delhi, ISBN: 9780074519332
- 4. Non-linear Mechanical Vibration P. Srinivasan, Tata McGraw Hill Pub. New Delhi, ISBN: 978-0-470-23439-6
- Fundamental of Mechanical Vibration S. Graham Kelly, Tata McGraw Hill Pub., ISBN-10: 1577666917
- 6. Mechanical Vibration Grover G. K., Nem Chand & Brothers, Roorkee, ISBN-13:9788185240565
- 7. Engineering Vibration Daniel J. Inman, Prentice Hall, NJ, 4th Edition, ISBN: 9780132871693
- Theory of Vibrations W. T. Thomson, CBS Publishers, New Delhi, ISBN 13: 9780136510680
 Noise, Pollution & Control – S. P. Singal, Narosa Publishing House, New Delhi, ISBN:

9788173193637