

Issue 29, 2022

Previous

Next

From the journal:

New Journal of Chemistry

Highly efficient metal-free ethylenediamine-functionalized fullerene (EDA@C₆₀) electrocatalytic system for enhanced hydrogen generation from hydrazine hydrate†

Shankar S. Narwade, ^a Shivsharan M. Mali, ^a Pratiksha D. Tanwade, ^a Parag P. Chavan, ^a Ajay V. Munde ^a and Bhaskar R. Sathe (i)

Author affiliations

Abstract

*ab

A synthesized non-precious metal-free electrocatalyst is demonstrated using the hydrazine hydrate oxidation reaction as a model reaction of hydrogen production. The ${\rm C_{60}}$ nanocomposite functionalized with ethylenediamine (EDA@C₆₀) was fabricated using a simple chemical approach. The EDA@C₆₀ composites were characterized using field emission scanning electron microscopy, energy dispersive analysis of X-rays, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and electrochemical techniques. In this study, the nitrogen lone pairs from the ethylenediamine surfacefunctionalized on C₆₀ are responsible for the further enhancement of electrocatalytic activity towards the hydrazine oxidation reaction. Comparative electrochemical studies with acid-treated C_{60} , i.e., $O-C_{60}$, and the further-functionalized ethylenediamine catalysts (EDA@C₆₀) demonstrated high performance, which was ascribed to their inferior onset potential and better stability. The electrochemical measurements indicate that the EDA@C₆₀ composites demonstrate twice the current density (20 mA cm⁻²) and a better onset potential (0.2 V vs. SCE) than O-C₆₀ for hydrazine oxidation. The electrocatalytic hydrogen evolution reaction (HER) performance of the O-C₆₀ and EDA@C₆₀ electrocatalysts indicate onset potentials of 0.37 V vs. SCE and 0.20 V vs. SCE, respectively. The

Citation New J. Chem., 2022, 46, 14004-14009 BibTex Go Permissions Request permissions Social activity Tweet	Share
Search articles by author Shankar S. Narwade Shivsharan M. Mali Pratiksha D. Tanwade Parag P. Chavan Ajay V. Munde Bhaskar R. Sathe	
Spotlight Advertisements	

Journals, books & databases

Home

About us

Membership & professional community

Campaigning & outreach

Journals, books & databases

Teaching & learning

News & events

Locations & contacts

Careers

Awards & funding

Advertise

Help & legal

Privacy policy

Terms & conditions

© Royal Society of Chemistry 2024

Registered charity number: 207890