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Abstract

The influences of electrochemical reduction degrees of reduced graphene oxide (rGO)-based electrode
on its electrochemical sensing performance toward heavy metal ions (HMIs) were investigated.
Initially, graphene oxide was synthesized by the modified Hummers’ method. Then, rGO films with
different degrees of electrochemical reduction were prepared by using the cyclic voltammetry (CV)
technique in different numbers of voltammetric cycles x (where x =3, 6, 9, and 12). The structural and
morphological characterizations of different degrees of reduction for rGOx were carried out by using
ultraviolet—visible spectroscopy, attenuated total reflection-infrared, X-ray diffraction, atomic force

microscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy.
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The charge transfer rate of rGOx modified glassy carbon electrodes (rGOx/GCEs) was investigated by
CV and electrical impedance spectroscopy measurements using a standard ferri/ferrocyanide system.
These modified electrodes were further investigated to achieve the best electrochemical performance
toward HMISs detection. The modified electrode with six voltammetric cycles (rGO6/GCE) exhibited
considerable improvements related to the stability, sensitivity, and well-oxidation potential definition
for cadmium ion (Cd2*) and lead ion (Pb2*). The deposition potential, pH value, and accumulation time
were optimized. The simultaneous electrochemical detection of Cd2* and Pb2* was performed using
differential anodic stripping voltammetry technique under optimized conditions in the presence of
bismuth ion (Bi3*). The Bi/rGO6/GCE was selected as the desired electrode and employed to detect the
Cd?* and Pb2* at different concentrations within a linear range between 10 and 50 pgL L The detection
limits for Cd2* and Pb2* were 1.2 and 0.2 pgL~1, respectively; with a signal to noise ratio (S/N = 3).
Finally, the repeatability and reproducibility were investigated which exhibited excellent stability with
relative standard deviations equal to 2.9 and 0.7% for Cd?* and Pb2* respectively, and similar linear

range with detection limits.
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1Introduction

Nowadays, access to freshwater has become the ultimate goal for the environmental research
community due to the developments in the anthropic actives which affect freshwater sources in direct
and indirect ways. Among these activates, electroplating, fabrication of batteries, mining, and
microelectronics are considered as the main water pollution sources with heavy metal ions (HMIs). The
term HMIs is generally referred to as any metal with five times greater density than that of water, at
least. The disadvantages accompanied by them, such as non-biodegradable and migration ability make
them a cause of concern. Therefore, in case they entered into the human body with water or food, they
can easily migrate and accumulate in the body, leading to a disturbance in the metabolism processes.
However, some of these metals such as Zn2?*, Cu2+, Co2*, Mn2+, Mo®*, and Fe3* are vital for

metabolism maintenance. Still, unfortunately, they will be toxic when exceeding trace levels [1-3].

Moreover, there are some HMIs that are very toxic at low concentration levels with no known benefits,
such as Hg2+, Cd2*, Pb2*, and As3*. Diseases produce from HMIs depend on different factors like the
type of metal ion, its concentration, and the exposure period. For example, Hg2* and Pb2* negatively

affect the nervous system, Cd2* causes kidney diseases, etc. The toxicity levels of these metals in the

drinking water were identified by many agencies, such as the world health organization (WHO), which

assigned for Pb%*, Cd?*, and Hg2* to be 10, 3, and 2 pgL !, respectively [4]. Therefore, an efficient

methodology for the detection and removal of these HMIs needs to be developed.
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Different methods and techniques have been developed for the trace of toxic metals determination such
as atomic absorption spectrometry (AAS) [5], electro-thermal atomic absorption spectrometry
(ETAAS) [6], flame atomic absorption spectrometry (FAAS) [7], inductively coupled plasma-atomic
emission spectrometry (ICP-AES) [8], inductively coupled plasma-mass spectrometry (ICP-MS) [9],
and inductively coupled plasma optical emission spectrometry (ICP-OES) [10]. However, these
methods are expensive to run, require professional maintenance and sophisticated instrumentation
and skilled personnel [11-13]. Despite the disadvantages of traditional techniques, electrochemical
stripping analysis has been recognized as a powerful technique for tracing these metals. Due to its
remarkable sensitivity, ability for multi-element determination, relatively inexpensive
instrumentation, and capacity to determine elements at trace and ultra-trace levels, the

electrochemical technique has been preferred [13].

Usually, the accumulation and stripping of metals in electrochemical techniques occur at a specific
electrode called a working electrode. Traditional hanging mercury drop (HMD) electrodes are
considered the most capable electrodes for the sensitive and selective detection of HMIs. However, due
to its toxicity impact, environment-friendly electrodes have replaced it; bismuth film is one of them
[14]. Usually, the drawbacks in the electrochemical sensor lie in its small effective area of the working
electrode. Thus it is necessary to solve this problem by choosing such a technique and material to
improve the working electrode’s surface area. However, when the surface area concept has been
highlighted, nanotechnology becomes the best option for surface area improvement. However, this
option requires such materials, which will have novel properties like excellent conductivity, enough
porosity, cost-efficiency, good stability, environmental safety, easy configurative, etc. Among these
materials, carbon nanomaterials have been dominant in this field, especially carbon nanotubes and
graphene [15-26].

Graphene has been highlighted as a novel material owing to the one-atom thickness structure, large
specific surface area, high flexibility, high electrical and thermal conductivity, and exceptional
mechanical and optical properties. Thereby, it has been integrated into novel sensor applications with
additional improvements regarding a small device size, low energy consumption, fast response, and a
user-friendly analytical platform [27—-33]. The mechanisms by which graphene and its derivatives
respond to toxic HMISs are adsorption and ion-exchange mechanisms [34—36]. The ion-exchange
mechanism between graphene derivatives and HMIs occurs due to the electrostatic interaction between
rich negative oxygen-containing functional group density on its structure and positive metal ions in
the solution. The adsorption mechanism occurs due to the active vacant sites on the large honeycomb
surface area of the graphene structure for HMIs in solution [37—-39]. Many systematic approaches have
been explored to produce graphene, such as thermal, electrochemical, mechanical, and chemical

approaches. These approaches have advantages and disadvantages in scalability, controllability,

4 of 42 6/16/2024, 2:12 PM



Controlling reduction degree of graphene oxide-based electrode for imp... https://link.springer.com/article/10.1007/s00339-020-04199-6

defectives, conductivity, and large mass production [40]. For large mass production and controlling the
synthesizing of graphene, the chemical approach has been widely used. The synthesis of graphene by
the chemical method can be achieved in two steps. The first step is to insert many oxygen-containing
functional groups between graphite layers using strong oxidized agents to produce graphene oxide
(GO). The second step is by introducing the GO to the reduced reagents or other reduction methods
[41]. Hence, the GO considers as a raw material for synthesizing graphene by chemical method.
However, usually, the reduction process of graphite oxide does not totally remove the oxygen-
containing functional groups from graphite oxide sheets; in this way, referring to this resultant as
reduced graphene oxide (rGO). Therefore, the fluctuations in the degree of reduction of rGO directly

affect its properties [42].

A few articles have concerned about the impact of the reduction degree of rGO on the sensor
application. For example, Daniela et al. examined the sensitivity influences of the nucleic acid biosensor
by four different types of rGO-based electrodes which were reduced by four different methods (i.e.,
chemical, hydrothermal, electrochemical, and thermal). The conclusion was that the thermally rGO-
based electrode produced the best electrochemical performance due to the higher polydispersity and
smaller sheet size which led to high defects on the electrode surface and this resulted in enlarging its
surface area [43]. Cherukutty et al. studied the detection of ammonia and toluene at room temperature
by using three types of rGO-based electrode, which were reduced by hydrazine in three different
periods. The desired electrode was with a long reduction period, which is justified by its reproducibility
due to creating new defects that have replaced the oxygen-containing functional groups after a long
period of thermally rGO [44]. Chen et al. studied relative humidity sensitivity at different thermal
reduction degrees of rGO. The result referred that the sensitivity toward the humidity increases while

the thermal reduction degrees increase [45].

To the best of our knowledge, numerous articles related to electrochemical sensors based on graphene
and its related materials have been published, no single article has been published which illustrates the
influence in the degree of reduction of rGO on the sensitivity, stability, and performance of an
electrochemical sensor toward HMIs. Moreover, the electrochemical detection of the HMIs depends not
only on the electrode's electrochemical conductivity, but also on the amount and type of chelating
ligands on this material's surface [46]. Therefore, the oxygen-containing functional groups on the rGO
surface have been employed as chelating ligands to capture the HMIs from aqueous media [47].
Nevertheless, there are different binding strength degrees of the oxygen-containing functional groups
on the rGO surface due to their type and location, which directly impact the stability and sensitivity of
the electrochemical sensor toward HMIs detection. Hence, it may be worthwhile to study the degree of

reduction of the rGO to obtain the desired response signal for HMIs detection.
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The present investigations suggest a green and straightforward approach to achieve the best
performance of rGO-based electrode to detect HMIs by selecting the desired electrochemical reduction
degree of rGO which is considered as an essential step for optimizing the experimental condition. Here,
a fast and straightforward approach for the preparation of different reduction degrees of rGO-based
electrode by electrochemical method from GO has been employed. The rGO modified glassy carbon
electrodes (GCEs) have been utilized for simultaneous detection of Cd2* and Pb2* using differential
pulse anodic stripping voltammetry (DPASV). Bismuth has been introduced to the supporting
electrolyte for better resolution achievement of HMIs stripping signals due to its good fused alloy
formation and less susceptible to oxygen background interference. The structural, morphological, and
electrochemical behavior of different reduction degrees of rGO was investigated. The sensing results
show the ability of rGO/GCE at the desired degree of reduction to detect the HMIs under toxic level
determined by WHO with excellent stability.

2 Experimental work

2.1 Reagents and apparatus
Graphite powder extra pure (60 mesh), KCl, and K;Fe(CN)q were bought from Sigma Aldrich. The

working solution containing Cd2*, Pb2*, and Bi3* that were prepared from respective metal salts. A
supporting electrolyte was prepared from a 0.1 M of acetate buffer (HAc-NaAc) solutions by mixing
appropriate quantities of (CH3COOH, CH3COONa). Different values of pH were adjusted by adding
appropriate quantities of 0.1 M of HCl and 0.1 M of NaOH. A CHI660C electrochemical workstation
performed the electrochemical measurements. The field emission scanning electron microscopy
(FESEM) attached with energy-dispersive X-ray spectroscopy (EDX) and non-contact mode atomic
force microscopy (AFM) were used to examine the surface morphology which was performed using a
Model JSM-6160 microscope and Park Systems; XE-7, respectively. Structural fingerprints were
investigated by Raman spectrum; AIRIX corp STR150 model, ultraviolet—visible (UV—-vis)
spectroscopy; (JASCO V-750), attenuated total reflection infrared (ATR-IR) and X-ray diffraction XRD

(advance 8 Broker). All the aqueous solutions were prepared with extra pure DI.

2.2 Preparation of GO dispersion
The precursor GO dispersion was synthesized based on the modified Hummers’ method from
thermally expanded graphite powder; detailed procedures presented in (supplementary information)

S1.1[48—52]. For preparing GO stock solution with 3 mgmL-! concentrations, the as-prepared graphite

oxide powder was dispersed in DI water and ultrasonicated for 40 min followed by centrifugation

treatments to remove unexfoliated graphite oxide sheets. Again, 5 mL of 0.1 mgmL~1 GO solution was
prepared by diluting from the stock solution and ultrasonicated for 15 min to give a cleared
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transparency yellowish GO solution as shown in (supplementary information) Figure S1.2.

2.3 Preparation of modified electrodes

Three types of substrates have been chosen to perform this work, namely ITO, copper clad, and GCE. In
contrast, the ITO and copper-clad were modified with the GO and rGO films used for morphological,
structural, and spectral characterization, respectively. The modified GCEs were used for

electrochemical characterizations and sensing experiments.

For preparing GO/cupper clad films, five pre-cleaned copper-clad substrates were spin-coated
independently with 40 pL of 3 mgmL~! GO stock solution for 30 s at 2000 rpm. Also, five GO/ITO films
were prepared by drop-casting of 20 uL of 0.1 mgmL~! GO solution on the pre-cleaned ITO substrates,
independently. Finally, the preparation of GCE modified by GO was done by drop-casting of 5 pL of

0.1 mgmL~1 GO solution on the pre-cleaned GCE. This process was repeated to obtain five electrodes.
All these 15 electrodes were kept in a desiccator under N, ambient for 24 h inside an oven at 40 °C.

2.3.1 Procedure for electrochemical testing

The electrochemical tests were carried out on the electrochemical workstation with an electrochemical
cell contains 50 mL quartz beaker capacity and three electrodes. These three electrodes assigned as a
modified electrode (GCE, ITO, and copper-clad), platinum plate, and saturated calomel electrode (SCE)
were used as a working, counter, and reference electrode. A 50 mL of 0.1 M acetate buffer (HAc—NaAc)
solution with pH 4.5 was used as a supporting electrolyte. For the DPASV analyses, the GCE modified
electrodes were immersed into the electrolyte containing 500 pgL~1 Bi3* and other HMIs under
vigorous stirring to get an abundant concentration of HMIs around the effective active area of modified
GCE. The charge-transfer rate was performed by cyclic voltammetry (CV) and electrical impedance
spectroscopy (EIS) techniques, respectively, in a 0.1 M KCI solution contained 5 mM of [Fe(CN)¢]3~/4~
[53, 54).

2.3.2 Electrochemical reduction of modified electrodes.

The CV technique can electrochemically reduce the GO by repeating the sweeping cycles within an
appropriate potential range [55—57]. Therefore, as-prepared GO modified electrodes were immersed in
the supporting electrolyte solution and electrochemically reduced by CV technique with a scan rate of
50 mV/s in the range between 0 and - 1.7 V; with the negative initial scan polarity. For obtaining the
modified electrodes with different electrochemical reduction degrees, each type of the three types of
GO modified electrodes (i.e., GO/GCEs, GO/ITO, and GO/cupper clad electrodes) was electrochemically
reduced by 0, 3, 6, 9, and 12 numbers of voltammetric cycles to produce five different electrodes in each

type of electrode. All these modified electrodes were kept in the desiccator with N, ambient at 40 °C for
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24 h. For preparing free-stand film samples, the copper-clad modified electrodes were immersed in
acetone solution for 10 min, followed by drying in a vacuumed dissector which kept in the oven at 50 °C
for 12 h. The GO and rGO films with different electrochemical reduction degrees have been peeled easily
from the copper-clad surface. Finally, the rGO samples with different electrochemical reduction
degrees were obtained and respectively marked as rGOx, where x indicated the number of reduction

voltammetric cycles (x=3, 6,9, and 12).

3 Result and discussions

3.1Spectroscopic characterizations

3.1.1ATR-IR spectroscopy study

ATR-IR spectroscopy was used to represent the degree of removing the oxygen-containing functional
groups from the graphene oxide sheets with different electrochemical reduction degrees [57]. Figure 1
shows the ATR-IR transmittance spectra for free-standing films of GO, rGO3, rGO6, rGO9, and rGO12,
respectively (from down to up). The spectra illustrate five typical absorption bands at 2860—3420,
1710, 1622, 1340, and 1028 cm™! corresponding to the bending vibration and stretching of —OH,
vibration and stretching of carbonyl C = O, 0—H bending and aromatic C = C stretch, epoxy and alkoxy
C-O stretch groups, respectively. The significant changes in absorption peaks in these spectra have
been observed at —OH stretch groups due to its weak binding within non-covalent interaction between
it and the basal plane of GO sheets leading to removal easily. Moreover, the inset in Fig. 1 shows the
extensive removal of —OH groups at the rGO3. It decreases behind that confirming the weak binding of
hydroxyl groups, which are easy to remove in the first beginning electrochemical reduction cycles. The
remaining hydroxyl functional groups did not show any appreciable changes which might be explained
in terms of the locations of these groups on the edges and defects of GO sheets due to a strong binding
with them [55, 58, 59].

Fig.1
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3.1.2UV-vis spectroscopy study

The UV—vis spectroscopy samples were prepared by the same concentrations of GO, rGO3, rGO6, rGO9,
and rGO12 dispersion in ethylene glycol with a ratio of 0.2 mgmL~1 by ultrasonication for 0.5 h. The
large particles were separated using centrifugation for 8 min at 700 rpm. Figure 2 shows the UV—vis
absorption spectra of GO, rGO3, rGO6, rG0O9, and rGO12. UV-vis spectroscopic measurements of GO
dispersion exhibit a strong absorption peak at 232 nm assigned for = — n* transition bonding of C=C
aromatic rings, a shoulder peak at 302 nm resulting from n — =* transition of C=0 bonds [49, 60].
While the electrochemical reduction process, this strong absorption peak at 232 nm red-shifted to 234,
245,249, and 264 nm for rGO3, rGO6, rGO9, and rGO12, respectively. This red-shifting indicated that
the structure restoring of graphene due to the removal of oxygen from oxygen-containing functional
groups during the electrochemical reduction processes led to the easy transfer through n-network in
the aromatic structure of rGO [49, 61]. However, this absorption peak gradually decreases with
increasing electrochemical reduction degree, indicating that the part of rGO precipitated gradually after
centrifugation due to the graphene's hydrophobic nature [62]. The shoulder peak at 302 nm remains in
a fixed position at all UV—vis spectra, confirming that the bonding of C=0 is strong enough to sustain
under the electrochemical reduction processes without any appreciable changes due to its location on
the edges and defects of GO sheets[63]. These results exhibit excellent support to that in ATR-IR,
where the appreciated changes were in the —OH functional group represented by n — n* transitions and

low changes were in the C=0 functional group represented by n — =n* transitions.
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UV-Vis spectra of GO, rGO3, rGO6, rGO9, and rGO12. Inset shows a digital photo of the samples and
magnification of characteristic absorption peak at the rGO12 spectrum

The changes in the color of as-prepared samples are good indicator of the reduction processes of the
graphene and its related material. Inset in Fig. 2 shows the yellow—brown color of the GO sample
gradually darkened and change to black at the last sample, i.e., rGO12 with light supernatants
indicating the degree of reduction and the graphene's hydrophobic nature have occurred successfully
[64].

3.1.3 Raman spectroscopy study

Raman spectrum is an efficient tool for study the structure of graphene and its derivatives like GO and

rGO [65]. Figure 3 shows the G-band, D-band, and overtone 2D-band in Raman spectra for the free-
standing films of GO, rGO3, rGO6, rG09, rGO12, and graphite powder. The G-band at 1580 cm™1
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represents the in-plane vibration, and D-band at 1350 cm ™! represents the out-plane vibration due to
the defects. The intensity ratios of D and G bands (Ip/Ig) were calculated to be 0.608, 0.694, 0.700,
0.704, and 0.724 for GO, rGO3, rGO6, rG0O9, and rGO12, respectively. The increase in the Ip/I; indicates
that the defects have been increased when the electrochemical reduction degrees have been increased
due to the removal of oxygen-containing functional groups from GO sheets. Therefore, this removal led
to a decrease in the average size of the in-plane sp2 domain, and it created defects in the basal plane of
the rGOx [66—69]. On the other hand, the 2D-band shows blue-shifts from 2658 cm™1 of GO to 2658,
2666, 2668, 2673, and 2675 cm ™! of rGO3, rGO6, rG0O9, and rGO12, respectively, as shown in the inset of
Fig. 3. These shifts with increasing the electrochemical reduction degrees are indicative of the degrees
of reduction as referred by Yang, Dongxing, et al. [70]. Also, the more shifting value is between GO and
rGO3 and gradually decreases between others, confirming that the large oxygen-containing functional
groups have been removed in the beginning electrochemical reduction cycles. Finally, the small and
broad peak of the 2D-band in all spectra indicates that the free stand films have multi-layers of
graphene [71].
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3.2 Structural and morphological characterizations

3.2.1XRD study

The raw material (i.e., graphite) and prepared free stand films of GO, rGO3, rGO6, rGO9, and rGO12

were structurally characterized by Powder-XRD (from down to up), respectively, as shown in Fig. 4.

The XRD patterns of graphite powder showed its inherent diffraction peak at 26.6° indexed to (002)

crystal plane with a d-spacing of 0.33 nm. This diffraction peak totally shifted to 10.8° with an

extension of d-spacing until 0.82 nm after the oxidation process due to the inserting of oxygen-

containing functional groups between graphite sheets by the aid of oxidant media, as shown in the GO

diffraction pattern in Fig. 4a. However, the diffraction patterns of electrochemical reduction samples

(rGO3-rGO12) showed gradually decreasing in the GO diffraction peak respectively; meanwhile, a new

broad diffraction peak at 24.8° has been grown gradually with increasing of electrochemical reduction

degree as shown in Fig. 4b. The d-spacing of reduction diffraction peak compressed until 0.36 nm

resulting in the removal of oxygen-containing functional groups between GO sheets. The small

secondary peaks present in the XRD patterns of the high degrees of reduction, i.e., rtGO9 and rGO12

came from ash impurities that are usually present in graphite powder sources due to their thermal

treatment when manufactured, as shown in (supplementary information) Figure S1.3. Moreover, these

peaks have disappeared from the XRD patterns of GO, rGO3, and rGO6 due to the incorporation and

encapsulation of the graphite sheets with the oxygen-containing functional groups. These results are

coincident with ATR-IR results confirming that the electrochemical reduction degrees were

Fig. 4
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Powder-XRD patterns of a Graphite, GO, rGO3, rGO6, rGO9, and rGO12 (from down to up),
respectively, and b 3-D comparison graphs of rGO3, rGO6, rGO9, and rGO12 (from front to back)

respectively

3.2.2 FESEM, EDX, and AFM study

Figure 5 shows the FESEM images with EDX of GO and rGO12 powder samples at two scales (i.e., 1 um
and 500 nm). As shown in Fig. 5a and b, the large size and aggregation sheet of GO has been observed
without noticeable edges in the 1 ym scale. This indicates the large size of GO sheets over 1 micron
which confirms the purpose of using expanded graphite (EG). However, these sheets on the same scale
have largely defected and average size decreases after electrochemical reduction due to the removal of

13 of 42 6/16/2024, 2:12 PM


https://link.springer.com/article/10.1007/s00339-020-04199-6/figures/4
https://link.springer.com/article/10.1007/s00339-020-04199-6/figures/4
https://link.springer.com/article/10.1007/s00339-020-04199-6/figures/4

Controlling reduction degree of graphene oxide-based electrode for imp... https://link.springer.com/article/10.1007/s00339-020-04199-6

the oxygen-containing functional groups from the basal plane and edges of rGO12 as shown in Fig. 5c
and d. These results are in agreement with Raman investigations. The EDX was done simultaneously
with the FESEM measurements to compare the amount of carbon to oxygen ratio (C/O) before and after
the electrochemical reduction process. As shown in Fig. 5e and f, the C/O are 1.998 and 5.488 for GO and
rGO12, respectively. The results indicate the removal of oxygen molecules from the oxygen-containing
functional groups existing on the rGO sheets. For further morphological investigations, the AFM
images were taken. Figure 6 shows the AFM images of bare ITO, GO/ITO, and tGO12/ITO. The bare ITO
topography shows the sharpest roughness and irregular surface, as shown in Fig. 6a. However, after
the GO was deposited on the bare ITO by spin coating, it appeared a uniform surface topography,
indicating that the GO sheets covered the sharpest roughness of the bare ITO surface, as shown in

Fig. 6b and d. Moreover, the little increases in the roughness height indicate that a few GO sheets were
deposited on the bare ITO. After electrochemical reduction, the rGO 12/ITO showed more uniform
surface topography and relatively less roughness due to removing the oxygen-containing functional
groups, as shown in Fig. 6c and e.

Fig.5
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FESEM images of a and b GO on the scale of 1 ym and 500 nm, respectively, and c and d rGO12 on
1 um and 500 nm, respectively, and EDX spectra of e GO and f rGO12
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Fig.6

Non-contact AFM images of a bare ITO, b GO/ITO and ¢ rGO12 on the scale of 5 ym, and d GO and e
rGO12 on 500 nm. All the samples were spin-coated on ITO substrates

3.3 Electrochemical characterizations of reduction degree of rGO-based
electrodes

3.3.1 Electrochemical reduction behavior of the GO-based electrodes.

Before studying the electrochemical reduction behavior of rGO in a supporting electrolyte, It should be
noted that the exact way of this approach is not entirely known. Therefore, it still needs further
investigation. However, electron exchange between the working electrode and GO in the presence of
hydrogen ions produced from the electrolyte (i.e., protonation processes) plays an essential role in the
electro-reduction process [65, 66]. This reaction may be described by Scheme 1.

Scheme1

Workino Flactrade Negative Scan Positive Scan
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Schematic diagram of the electrochemical reduction mechanism of graphene oxide by CV technique

Figure 7 shows the cyclic voltammograms (CVs) of electrochemical reduction processes for rGO3, rGO6,
rGO9, and rGO12 which exhibit approximately identical CVs except for the number of voltammetric
cycles. Furthermore, the CVs show that the larger reduction part of oxygen-containing functional
groups has been removed in the first voltammetric cycle with sharp and broad reduction peaks at - 1.1
and - 1.5V, respectively. The sharp reduction peak represents the reduction of the weak oxygen-
containing functional groups located on the basal plane of GO sheets within non-covalent interaction.
However, the broader reduction peak at - 1.5 V attributes to the reduction of the strong oxygen-
containing functional groups located at the edges and defects of the GO sheets. The rest of the
voltammetric cycles have no sharp reduction peak, just remaining the broader reduction peak at higher
potential, indicating that the weak oxygen-containing functional groups located on the basal plane
which have mostly been removed in the first voltammetric cycle, and the strong oxygen-containing

functional groups have been gradually removed from the edges and defects of the GO sheets [68, 69].

Fig.7
00l @ .. (b) rGO6
P 4 0.0 4
02 1/ "
4 0.2 4
Y,
< 06 - :' 0.4
£
— (©) réo9 () rGO12
001 ”_‘ 0.0 W_‘

16 of 42 6/16/2024, 2:12 PM


https://link.springer.com/article/10.1007/s00339-020-04199-6/schemes/1
https://link.springer.com/article/10.1007/s00339-020-04199-6/schemes/1
https://link.springer.com/article/10.1007/s00339-020-04199-6/schemes/1
https://link.springer.com/article/10.1007/s00339-020-04199-6/figures/7
https://link.springer.com/article/10.1007/s00339-020-04199-6/figures/7
https://link.springer.com/article/10.1007/s00339-020-04199-6/figures/7

Controlling reduction degree of graphene oxide-based electrode for imp... https://link.springer.com/article/10.1007/s00339-020-04199-6

_021
0.2

_041
0.4

064
0.6

16 -12 08 -04 00 16 -12 08 -04 00
Potential/V

The CVs for the electrochemical reduction GCE modified with rGO3, rGO6, rGO9, and rG0O12;in 0.1 M
acetate buffer solution, pH 4.5; saturated with nitrogen gas. The range is between 0 and - 1.7 Vand

0.05 Vs~!scan rate

3.3.2 The charge-transfer behavior of modified electrodes.

The charge-transfer rate behavior at the electrode/solution interface can be explained by knowing the
values of redox peak currents (I) and the potential difference between them (AE;), and charge-
transfer resistance (R.t), using CV and EIS, respectively [31, 70]. Figure 8 shows the charge transfer
rate features of bare and modified GCEs with GO, rGO3, rGO6, rGO9, and rGO12 which were evaluated
by CV and EIS in the electrolyte (i.e., 5 mM K3Fe(CN)g in 0.1 M KCl solution) as the electrochemical
probe at the electrode/solution interface [31]. The detailed measurements of Fig. 8 are presented in
Table 1. Figure 8a shows all the recorded CVs which could be seen that the [Fe(CN)¢]3~/4~ redox
reaction at the bare GCE is a quasi-reversible redox process with AE, = 82 mV. Also, the anodic and
cathodic peak currents have a ratio of about 1:1 representing that the GCE has manifested a well-
behaved reaction interface to the [Fe(CN)g]3~/4~ couple [ 55]. However, for the GO modified GCE (GO/
GCE), both redox peak currents were relatively increased due to the interaction between electrolyte
species in the solution and oxygen-containing functional groups existed on the GO sheets based
electrode. Moreover, the value of AE, = 149 mV was increased due to the electron transfer inhibition due
to the GO’s low conductivity nature. Nevertheless, the degrees of electrochemical reduction increase,
the AE, gradually decreases with values of 94, 91, 90, and 88 mV for GCEs modified with the rGO3,
rGO6, rGO9, and rGO12, indicating that the enhancement of charge-transfer rate was due to the
removal of the oxygen-containing functional groups from GO sheets during the electrochemical
reduction processes. However, the CVs showed a gradual increase of I, at the rGO3 and rGO6, and then
decrease at rGO9 and rGO12. The increase indicates the removal of the weak oxygen-containing
functional groups and the decrease indicates that the relatively strong oxygen-containing functional
groups have been removed depending on their type and location. Moreover, the relative change of I, at

the higher reduction degree is small compared with the lower reduction degree which confirms that a
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large amount of weak oxygen-containing functional groups was removed in the beginning of
voltammetric cycles.

Fig.8
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The behavior of charge-transfer rate is evaluated by using: a CV and b EIS techniques for bare GCE,
GO/GCE, rGO3/GCE, rGO6/GCE, rGO9/GCE, and rGO12/GCE; in 0.1 M KCl solution containing 5 mM

K3Fe(CN)g as a redox probe system. The scan rate is 0.5 Vs ™! repeated in the range between - 0.2 and

0.6V, the frequency range is between 0.1 and 10° Hz while applying the 0.2 V AC amplitude. The
insets in Fig. 8 a and b demonstrate histogram plot including error bare of AE, and the fitting
electrical circuit for the EIS data, respectively

Table 1CV and EIS parameters of bare and modified GCE

Therefore, the rGO6/GCE shows desired oxygen-containing functional groups which can work as the
efficient chelating ligands for HMIs sensing applications.

EIS was used to monitor the electron transfer between the electroactive species in a solution and the
underlying electrode [71, 72]. Figure 8b shows the EIS Nyquist plots for bare and modified GCEs with
the GO, rGO3, rGO6, rGO9, and rGO12 at AC 0.2 V amplitude within the frequency range between 0.1 and
10° Hz. According to the plots, there are semi-circles and a straight line at high and low-frequency
regions, respectively. For fitting EIS data, the Randles circuit model, Rs + Cq1/(Rct + Zw), was used; where
Ry is the electrolyte resistance, Cq) is double-layer capacitance, R is charge-transfer resistance, and Zy
is Warburg impedance. The diameter of the semicircle represents the charge-transfer resistance R at
the electrode/electrolyte interface. The R.; values were calculated to be 527, 3002, 1347, 987, 925, and
754 Q for unmodified GCE and modified GCEs by GO, rGO3, rGO6, rGO9, and rGO12, respectively. These

results exhibited agreement with that of the CV characterizations in terms of charge transfer rate.

3.4 Stripping behavior for HMIs

3.4.1 The anodic stripping voltammetric responses for HMIs at the modified GCEs.
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The sensor specifications for the as-prepared electrodes to select the best performance electrode that
can be used for further sensing study. Under arbitrary experimental conditions like deposition potential
asa -1V, pH=4, and 5 min accumulation time, the electrochemical measurements were carried out.
The differential pulse anodic stripping voltammetry (DPASV) technique was employed for these
analyses. With the supporting electrolyte containing 50 ngL 1 of Cd%* and Pb2* in the presence of

500 pgL~! Bi3*, the DPASV measurements were recorded at the GCEs modified with GO, rGO3, rGO6,
rGO9, and rGO12, respectively, as shown in (supplementary information) Figure S2 and Fig. 9. The
detailed results of Figure S2 and Fig. 9, like relative standard deviations (RSDs), response peak height,
and oxidized potential status, have been illustrated in Table 2. The RSDs of six times repeated reading
at GO/GCE are 24.30 and 17.80% for Cd2* and Pb2*, respectively, indicating bad repeatability due to the
removal of weak oxygen-containing functional groups from the GO sheets during the sweeping of the
stripping potential as shown in Figure S2a. Also, there is no well-defined oxidized potential and slow
growth of Bi film due to the same reason. However, Figure S2b shows an optimization in the
repeatability at rGO3/GCE where RSDs are 0.78 and 3.16% for Cd2* and Pb2* respectively, and well-
defined oxidized potential due to the removal of the weak oxygen moiety from GO sheets after
electrochemical reduction by three voltammetric cycles. Nevertheless, the slow growth of Bi film is still
observed because the degree of reduction was not sufficient to remove all the weak oxygen-containing
functional groups from the GO sheets. Figure S2c represents well-defined oxidized potential, and fast
growth of Bi film deposition at rGO6/GCE after electrochemical reduction by six voltammetric cycles;
the RSDs are 6.42 and 10.33% for Cd?* and Pb2+, respectively. However, the increase in the RSDs may
be due to the highly response to the experimental conditions owing to its electrochemical conductivity
improvement. After electrochemical reduction by nine voltammetric cycles, Figure S2d shows RSDs as
9.22 and 11.10% at the rGO9/GCE for Cd2* and Pb2*, respectively. The increase in the RSDs was due to
the same reason aforementioned at the rGO6/GCE but there is a new unwanted broad peak current at
the potential position between that for Cd2* and Pb2*, indicating the overlapping between the residuals
of Cd%* and Pb2*. This overlap can be explained concerning the Bi film and the oxygen-containing
functional groups. The latter act as nuclei for the Bi on the rGO sheets; thereby, the lack of oxygen-
containing functional groups led to the loose fused alloy [73]. Again the unwanted peak increased at the
rGO12/GCE due to the same reason at the rGO9/GCE as shown in Figure S2e. All the stripping peak
heights for Cd%* and Pb?* at modified GCEs represent in Fig. 9. These results summarized in Table

2 exhibit the highest response signals for Cd2* and Pb%* at rGO6/GCE.
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modified by GO, rGO3,rG06,rG09,and rGO12 in 0.1 M HAc-NaAc buffer solution which saturated with nitrogen

gas, containing 50 ugL~! of Cd2* and Pb2* in the presence of 500 pgL~! Bi3*

The compared staked graphs of the DPASVs for GCEs are

Table 2 the detailed comparison of the DPASV responses for HMIs at different modified

GCEs

These results show that the rGO6/GCE has the highest response signals toward HMIs, well-defined

oxidized potentials, and fast growth of Bi film which are entirely in agreement with that for charge-

transfer analyses referred to in Sect. 3. Indeed, its repeatability was not relatively excellent, but this

obstacle can be solved by optimizing the experimental conditions.

3.4.2 Electrochemical performance of modified electrodes toward HMIs.

The improvement of stripping signal responses toward Cd2* and Pb2* at the bare GCE and rGO6/GCE
with free and presence of Bi films (i.e., Bi/rGO6/GCE and Bi/GCE) in the acetate buffer solution

containing 20 pgL ! of Cd2* and Pb2* by DPASV technique under optimal conditions were examined, as

shown in Fig. 10. It can be easily seen that the voltammogram of Bi/rGO6/GCE (wine color) exhibits
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anodic peak current of Cd%* and Pb2* higher than others by multiple folds with well-defined peak
shapes centered at - 0.78 and - 0.535 V, respectively. The voltammogram of bare GCE free Bi film (Red
color) does not show any appreciable stripping signal response except for Pb2* due to the active
graphite sites in the GCE structure. However, the stripping signals at rGO6/GCE free Bi film (Black
color) show a relatively little optimization compared with those at bare GCE due to the role of the rGO as
a good conducting material as well as the wealthy oxygen-containing functional groups existing on its
surface led to catch HMIs. Also, they do not show well-defined oxidized potentials and bad fusing of the
stripping signals toward HMIs. Finally, the stripping voltammogram of bare Bi/GCE in the presence of
Bi3* (Green color) shows good stripping signals response with well-defined oxidized potentials due to
the role of Bi film which improves the fusing of HMIs and less susceptible to oxygen background
interference [14, 74].
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DPASVs of: bare-GCE, rGO6/GCE, Bi/GCE, Bi/rGO6/GCE in 0.1 M HAc-NaAc buffer solution;

saturated with nitrogen gas, containing 20 pgL ! of Cd%* and Pb2* and 500 pgL1 Bi3*. The dashed
line represents the baseline of GCE in a blank buffer solution

3.4.3 Optimizations of anodic stripping voltammetry

The height and shape of anodic stripping voltammetry signals of HMIs depend on the various
parameters like a supporting electrolyte, pH value, deposition potential, and accumulation time. The
effect of supporting electrolyte was solved by selecting the 0.1 M acetate buffer (HAc-NaAc) solution
containing 500 ugL -1 Bi3* as a referred in many sources [75—77]. The favorable pH value was chosen
after studying the effect of pH on the stripping signals toward 40 pgL~! of Cd2* and Pb2* in the
supporting electrolyte in the range between 3 and 9, as shown in Fig. 11a. The maximum stripping
signals were at pH = 4.5. The decrease in the stripping signal at the pH value lower and higher than 4.5
can be assigned to the protonation with the oxygen-containing functional groups on the surface of rGO
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and hydrolysis of the HMIs in the supporting electrolyte, respectively. Thus, pH = 4.5 was selected as
the optimal pH for further analysis. It is essential to select an appropriate deposition potential to obtain
the highest sensitivity. The Fig. 11b shows the study of the effect of deposition potential on the
stripping signals toward 40 pgL~! of Cd2* and Pb2* in supporting electrolyte in the range between - 6
and - 1.6 V. In this Figure; the inset shows two dot lines (red and black colors) for Cd%* and Pb2*,
respectively. The increase in the deposition potential led to an increase in the amount of HMI species on
the electrode surface due to the electrostatic interaction. Here, the deposition potential was selected as
- 1.4 V where the Cd2* and Pb2* get saturated without remaining residuals of the HMIs after the
stripping step. The increasing of the deposition potential behind - 1.4 V showed an appreciable increase
in the stripping signal of Pb2*, but this was not considered due to the remaining residuals of the HMIs
after the stripping step (poor preconditioning). In this case, the poor preconditioning of the underlined
electrode at the higher negativity deposition potential was due to the formation of H* from reducing
the water that will reduce the efficiency of electrode recovering [78]. The effect of accumulation time
on the stripping signals was demonstrated in Fig. 11c. The inset in Fig. 11c represents the relationship
of the accumulation time and stripping current peaks toward 40 ugL 1 of Cd2* and Pb2* in the range
between 30 and 300 s in the supporting electrolyte. The stripping signals clearly show direct
proportional with the accumulation time. However, the stripping signals after 240 s have a low slope,

indicating the lowering in the response of stripping signals with increasing the accumulation time.
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Potential/V

DPASVs show the effect of a pH, b deposition potential and c accumulation time on the stripping
peak currents of Cd2* and Pb2* from the Bi/rGO6/GCE in 0.1 M HAc-NaAc buffer solution containing
40 pgL1of Cd2* and Pb%* and 500 pgL~1 Bi3* saturated with nitrogen gas. The Insets in Figures b
and c show the linear relations between stripping peak currents of Cd2* and Pb2* with deposition
potential and accumulation time, respectively

Therefore, the optimized conditions like the supporting electrolyte, pH value, deposition potential, and
accumulation time were chosen to be 0.1 M HAc-NaAc solution containing 500 ugL~1Bi3*, 4.5, - 1.4V,
and 240 s, respectively.

3.4.4 Analytical features of the modified electrode

The Bi/rGO6/GCE electrode was used to perform the simultaneous detection of Cd2* and Pb2* under the
optimized conditions. Figure 12 shows the DPASVs at varying Cd2* and Pb2* concentrations. The
stripping peak current signals in the scale of pA were linearly proportional to the concentration of the
HMIs in the range between 10 and 50 pgL~1 with 6 number of data points. The limit of detection (LOD)
values of Cd2* and Pb2* were calculated to be 1.2 and 0.2 pgL 1 respectively, with the signal to noise
ratio (S/N) equals 3. These results have been calculated by using a [LOD = 3.3 Sy/S] formula; where Sy is
the standard deviation of the response at a level near the blank solution (i.e., seven times) as shown in
(supplementary information) Figure S4; S is the slope of the calibration curve; detailed calculations
have been represented in the supplementary information S4.1. The regression equations are: I (pA) =
0.2¢ (ugL™1) - 0.3; (R2=0.991) and I (pA) = 0.4¢ (ugL1) - 1; (R2 = 0.974) for Cd%* and Pb2*, respectively.
The calculated values of LOD for Cd2* and Pb2* were lower than that recommended by WHO for Cd2*
and Pb?* (i.e., 3 and 10 pngL1, respectively) in drinking water [4].

Fig. 12
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The DPASV for various concentrations (0, 10, 15, 20, 30, 40 and 50 ugL! from bottom to top) of
Cd2* and Pb2* on the Bi/rGO6/GCE. Supporting electrolyte: 0.1 M acetate buffer (pH = 4.5)

containing 500 pgL1 of Bi3* and other HMIs under optimal conditions

The stability of the electrochemical sensor was investigated in terms of repeatability and
reproducibility by the DPASV technique under the optimized conditions. For the study of the
repeatability of the electrode, seven successive measurements were carried out using the same sensor
toward 15 pgL~! of Cd2* and Pb2*. The RSDs were calculated for the Bi/rGO6/GCE to be 2.9 and 0.7% for
Cd2%* and Pb2* respectively, as shown in (supplementary information) Figure S3. The reproducibility
and stability of the electrochemical sensor were investigated using four Bi/rGO6/GCEs that were
prepared similarly. Weekly, one of these electrodes was used for one time for measuring the linear
ranges. The obtained linear ranges and detection limits of the electrochemical responses were similar

as shown in (supplementary information) Figure S3.1.

The analytical performance of this modified electrode was compared with different modified electrodes
and detailed results shown in Table 3. Although this work is an inexpensive and green approach, it is
clear that the Bi/rGO6/GCE shows the lower RSDs, indicating the highest stability due to selecting the
best reduction degree of rGO that achieved high electrochemical sensing performance toward HMIs
detection. However, the LOD shows a lower value for Pb2* and acceptable value for Cd%*; both are much

lower than the recommended values in drinking water assigned by the WHO.
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Table 3 A comparison between the analytical performances of different modified
electrodes has been reported for detecting the Pb2* and Cd2* in aqueous media

It can be concluded here that all these studies indicated that the prepared electrochemical sensor has

good sensitivity, repeatability, reproducibility, and stability.

4 Conclusion

In summary, a green and simple approach for different degrees of rGOx-based electrodes was prepared,
characterized, and applied for the detection of HMIs in presence of Bi. Among different reduction
degrees of rGOx-based electrodes, the Bi/rGO6/GCE exhibited excellent stability and desired response
signal toward HMISs. This electrode was considered as the desired electrode for the electrochemical
sensor which was then used for further electrochemical analysis. Under optimized conditions, the Bi/
rGO6/GCE showed excellent electrochemical performance toward HMIs and detected Cd2* and Pb2* to
the levels under toxic levels determined by WHO. This study aimed at understanding the relationship
between the structure of reduced graphene oxide and its affinity toward HMIs. Finally, it concluded
that the specific degree of the rGOx is going to play a significant role in achieving better sensitivity,
stability, and LOD values toward HMIs detection.
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