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Abstract

The detection of water pollutants employing organic field-effect transistor (OFET) sensor requires a
stable performance in an aqueous media. It is an essential condition of any sensor to present reliable
measurements. Some organic-conducting polymers deteriorate almost immediately in the presence of
an aqueous medium. However, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) has proven its stability in both air and aqueous mediums. Nevertheless, due to
inadequate structural and chemical properties of the PEDOT:PSS, it persists major obstacles and
inhibits its performance in practical applications. These shortcomings can be overcome with the

combination of carbon nanomaterials. Therefore, the present study deals with the effect of inclusion of
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reduced graphene oxide (rGO) into PEDOT:PSS, and it resulted in the enhancement of structural,
morphological, and electrical properties of the PEDOT:PSS/rGO nanocomposite. The organic field-
effect transistor (OFET) was fabricated with PEDOT:PSS/rGO nanocomposite to detect heavy-metal

ions. This makes a highly sensitive and selective sensor platform for detecting Hg2* in the linear
concentration range of 1-60 nM. The presented OFET sensor manifests high sensitivity and selectivity

to Hg2* with a low detection limit of 2.4 nM. The variety of metal ions tested, i.e., Hg2*, Cd%*, Pb2+,
Cu?*, Zn2* Na*, and Fe3*, to investigate the selectivity. The sensor exhibits stable performance in an
aqueous medium for the detection of Hg2* in the presence of DI water. Moreover, the OFET sensor

responded within 2—3 s after incubation of Hg2* ions’ solution.
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1 Introduction

There is nothing more essential to human life for sustaining on earth than water, which presents a
significant function in maintaining human health. Many people across the globe are struggling to have
access to quality water for drinking. The industrial revolution has substantially increased due

to Mercury exposure in drinking water. The increasing amount of mercury into the atmosphere,
released from anthropogenic sources, results in human health risk. The increased exposure to mercury

has adverse effects on the brain, heart, kidneys, lungs, immune system, and nervous system
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mercury, as a global pollutant. As direct exposure of heavy metals (mercury and other metal ions) leads
to various health hazards, the control/detection of heavy-metal ions (HMIs) from aqueous media is of
the initial concern and enormous importance of the present era. According to the guidelines of the

United States Environmental Protection Agency (USEPA), the maximum acceptable concentration of

Hg2* in drinking water is 2 ppb (10 nM) [8].

The field-effect transistors (FETs) based on organic materials (OFETSs) have started gaining
researchers’ attention. Large-scale fabrication, low-cost, portable, low-temperature, and
biocompatible are a significant benefit of OFETs. Moreover, it exhibits high sensitivity and tunable
property, which is made achievable through the simple solution and printing processability
[9,10,11,12]. Recently, Minami et al. fabricated an extended gate (Au)-modified L-cysteine and
dipicolylamine OFET sensor based on pBTTT-C;¢ as an active layer for the electrical detection of Hg2*
ions at 155 nM and 49.9 nM concentrations [13, 14]. Rullyani et al. reported the organic thin-film
transistor (OTFT) for the detection of Hg2* ions from aqueous medium using Pyrene-SH
functionalization at the detection limit of 10 nM. However, it requires a high operating voltage [15].
Oren et al. have developed an OFET sensor based on DNA-functionalized Au NP/PII2T-Si for the
detection of Hg2* at 10 pM concentrations [16]. Nevertheless, the reported Hg2* OFET sensors are less
sensitive, require high operating voltage, and had detected at higher concentrations, which do not
comply with the maximum acceptable concentration set by the EPA, USA. Moreover, the colorimetric,
fluorometric, and electrochemical techniques also have been explored for Hg2* detection. However, it
could not achieve maximum contamination levels (MCL) recommended by the EPA, US [17,18,19,20].
Therefore, a sensor that overcomes the above obstacles is of conspicuous importance. It is advisable to

build an analytical platform for the detection of heavy-metal ions from aqueous media.

Detection of HMISs in the presence of water requires stable polymeric materials for chemical sensor
applications, and it is an inferable requirement of any sensor to produce reliable measurements.
However, some polymeric materials (e.g., P3HT and PBTTT) are not stable in the water medium and
degrade almost immediately [16, 21]. Their operational instability under aqueous medium has
hindered the realization of their potential advantages. Therefore, alternative organic-conducting
polymer material needs to be explored for the sensing application, which can be efficiently performed
under liquid medium for the electrical detection of heavy-metal ions. Recently, the possible exploration
of PEDOT:PSS in various applications such as solar cells, light-emitting diodes, and resistive switching
devices have been explored [22,23,24]. The commercially available PEDOT:PSS has proven its stability
in air and aqueous mediums [25, 26]. However, due to inadequate structural and chemical properties of
the PEDOT:PSS, it persists major obstacles and inhibits its performance in practical applications. These

shortcomings can be overcome with the combination of carbon nanomaterials [27]. Fascinating rGO
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received much more attention because of its outstanding properties, i.e., high specific surface area,
excellent electrical, mechanical, and biocompatible properties [28, 29]. Hence, it is a promising
material to be explored for its possible inclusion into the PEDOT:PSS-conducting polymer matrix to
enhance its electrical features [30]. The significant perspective of blending rGO into PEDOT:PSS is that
(i) the PEDOT:PSS chains form over rGO sheets’ surfaces through z—z interactions between materials.
(ii) It possesses the inherent property of electrical detection of chemical species due to high mobility
[31,32,33,34]. By taking advantage of the outstanding properties of rGO, it is a convenient way to blend
it into PEDOT: PSS, which can enhance the properties of host materials and will be suitable for the

detection of heavy-metal ions from aqueous media.

Herein, we incorporated chemically reduced GO into commercially available PEDOT:PSS matrix, which
resulted in the significant enhancement in the structural, morphological, and electrical conductivity.
Further, the composite of PEDOT:PSS/rGO explored for heavy-metal ion detection. Moreover, the
PEDOT:PSS/rGO nanocomposite can enhance the signal transduction at the electrolyte—electrode
interface [29]. The presented OFET sensor manifests high sensitivity and selectivity to Hg2* with a low
detection limit of 2.4 nM. Moreover, the sensor exhibits stable performance in deionized (DI) water in

the linear range of 1-60 nM.

2 Experimental

2.1 Chemicals
All the reagents required to synthesize graphene oxide (GO) are high purity grades (>99%) and used

without further purification. Graphite powder was procured from Merck, and phosphoric acid (H3PO,),
sulfuric acid (H,SO,), hydrogen peroxide (H,0,), and potassium permanganate (KMnO,) was procured
from Sigma Aldrich. Hydrazine hydrate (N,H,) was purchased from Alfa Aesar and used without
further purification. The commercially available poly(3,4-ethylene dioxythiophene) polystyrene
sulfonate (PEDOT:PSS) was purchased from Sigma Aldrich, which has a concentration of 1.3 wt%.
Heavy metal ion solution containing, i.e., Hg?*, Cd2*, Pb2*, Cu2*, Zn%*, Fe3*, and Na*, was prepared by

adding chloride salts in DI water.

2.2 Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO)

Graphene oxide (GO) suspension was synthesized using the improved ‘Hummers’ method [35]. In
short, the graphite powder (1 g) and KMnO, (6 g) were blended in one beaker and concentrated acidic
solution of H,S0,/H3PO, in a 9:1 volume ratio in another beaker. The solid mixture of graphite powder/
KMnO#4 slowly added in an acidic solution of H,SO,/H3PO,, in an ice bath at 5 °C temperature. The

reaction was agitated for 12 h, accompanied by the addition of 10 mL of 30% H,0, to terminate the

6/16/2024,

https://link.springer.com/article/10.1007/s00339-021-04314-1

12:35 PM



Selective Hg2+ sensor: rGO-blended PEDOT:PSS conducting polymer... https://link.springer.com/article/10.1007/s00339-021-04314-1

50f25

reaction. After that, the suspension was diluted with deionized water and centrifuged at 9000 rpm for
30 min to exclude the large aggregates and unreacted graphite. The GO was collected and purified by
three times centrifugation. The obtained precipitate after centrifugation was GO and later explored for
the reduction process. The chemical method was adopted to reduce GO using hydrazine hydrate. In
brief, 50 mg of solid GO powder was dried at 50 °C for 24 h to synthesize rGO. Dried GO was dispersed in
50 ml of deionized water and ultrasonic treatment for 2 h to open the layers of GO. A 50 nl of hydrazine
hydrate was introduced as a reducing agent into GO suspension and heated at 95 °C for 1 h and kept it in
a hot oven to reduce graphene oxide (GO). After chemical reduction, the solution was centrifuged at

14,000 rpm for 30 min. The obtained precipitate was rGO.

2.3 Synthesis of PEDOT:PSS/rGO nanocomposite

The PEDOT:PSS/rGO composites were synthesized by the solution mixing method. The 5 ml solution of
rGO was added to 5 ml of 1.3 wt% PEDOT:PSS aqueous dispersion solution at a volume ratio of 1:1, then
stirred and ultrasonicated for 2 h at ambient temperature to get the homogeneous solution of
PEDOT:PSS/rGO. Finally, the obtained PEDOT:PSS/rGO composite was subjected to electrical
characterization and explored to develop the organic field-effect transistor (OFET) to detect heavy-

metal ions.

2.4 Characterizations

Grazing incident X-ray diffraction pattern was recorded with Brucker (D8 Advance, Germany) at the
power of 40 kV and 40 mA using Cu Ka radiation (1 =1.54059 A). Morphological characterization was
carried out by atomic force microscopy (AFM) (Perk Systems, XE-7) and field emission scanning
electron microscopy (FE-SEM) (Hitachi High-Technologies S4800) at 2 kV accelerating voltage. Raman
scattering was recorded using XploRA PLUS Confocal Raman Microscope in the range of 200—

3000 cm~L. A maximum laser output power of 100 mW with a 785-nm laser diode was used as a
wavelength source. Electrical characterizations and OFET-sensing experiments for detecting heavy-

metal ions were recorded with Keithley 4200 SCS with probe station (Ecopia).

3 Results and discussion

3.1 X-ray diffraction
Grazing incident X-ray diffraction (GIXRD) pattern of GO, rGO, PEDOT:PSS, and PEDOT:PSS/rGO was

studied to investigate the structural features, as shown in Fig. 1. Due to the amorphous nature of
commercially available PEDOT:PSS polymer, no diffraction peaks were observed [36]. The GO
diffraction peak at 26 = 9.74° reinforces the d-spacing of 0.90 nm, suggesting that the GO has

6/16/2024, 12:35 PM
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interlinked by hydroxyl and carboxyl functional groups, which manifest that the GO synthesized
successfully. The GO peak at 26 =9.74° disappear after the reduction process, and a broad diffraction
peak at approximately 260 = 23.85° appeared due to the removal of oxygen-containing functional groups
from GO. It indicates that rGO is synthesized successfully. The X-ray diffraction pattern for chemically
reduced GO was well matched with previously reported data [37,38,39]. The average crystallite size and
FWHM were calculated using DIFFRAC.EVA software. Debye—Scherrer’s equation was applied to
calculate an average crystallite size of rGO and PEDOT:PSS/rGO, as mentioned in the following equation
[40,41,42,43,44,45,46,47,48,49]:

SSD = \frac{0.9\lambda }{{\beta \cos \theta }},SS

(M
Fig.1
— PEDOT:PSS/rGO -
= —— PEDOT:PSS |
S *
.és -
® r <
: p— —
2 - -
E j— -
L rGO |
- 9.74° 1
- ——GO ]
10 20 30 40 50 60 70 80
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GIXRD pattern of GO, rGO, PEDOT:PSS and PEDOT:PSS/rGO nanocomposite

where D is an average crystallite size, \(\lambda\) is the X-ray copper tube wavelength, i.e., CuKa
(1.5406 A), \(\beta\) is full width at half maxima (FWHM), and ¢ is the Bragg angle. The average
crystallite size of chemically reduced graphene oxide was 32.4 A at FWHM 2.791. Whereas, the inclusion
of rGO into PEDOT:PSS leads to an increase in average crystallite size of 49.3 A at FWHM 1.830 for
PEDOT:PSS/rGO. The increase in average crystallite size may contribute to carrier mobility

enhancement [50], which will be suitable for detecting heavy metal ions sensitively.

3.2 Atomic force microscopy (AFM)

The morphological characterization was carried out at a scan rate of 0.5 Hz over a scan area of 3 pm x

3 pm. The surface properties were extracted using XEI AFM image processing and analysis software. A
Gaussian function fitted to the AFM experimental data to calculate the average height of the GO, rGO,
PEDOT:PSS, and PEDOT:PSS/rGO nanocomposite. AFM height histograms are depicted in Fig. 2a—d to
reveal the surface area to volume ratio, average surface roughness, and surface height of synthesized
materials and scanned micrographs displayed in the inset of Fig. 2a—d. The AFM micrograph of GO,
shown in Fig. 2a, exhibits high surface area (9.62 um?2), average surface roughness (18.80 nm), and
average height (23.27 nm). The surface area, average surface roughness, and surface height of rGO
decreased after the reduction of GO due to the removal of oxygen-containing functional groups from it,
as shown in Fig. 2b. Due to uniform distribution and homogeneous surface area of PEDOT:PSS, it can
be clearly seen in the inset of Fig. 2c, a 2D view, it exhibits low surface area, average surface roughness,
and height. However, PEDOT:PSS/rGO nanocomposite exhibited higher surface area, average surface
roughness, the height of 9.27 pm2, 40.47 nm, and 7.91 + 0.27 nm, suggesting the formation of
PEDOT:PSS/rGO nanocomposite successfully. The surface area ratio, average surface roughness, and
heights of the materials are shown in Table 1. The incorporation of rGO into PEDOT:PSS made a
noticeable impact on enhancement in the surface area, average surface roughness, and height, as
shown in Table 1. Moreover, the charge transport is more sensitive to the surface roughness of the
sensing materials.

Fig.2

(A)

h=(9.89 1 0.32) nm

h=(23.27 + 1.88) nm s h=(3.53+017)nm
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Table 1Surface area, surface roughness, and average height of the materials

3.3 Raman spectroscopy

Raman spectra of GO, rGO, PEDOT:PSS, and PEDOT:PSS/rGO were recorded to examine structural
disorder, as depicted in Fig. 2e. The Raman spectra of GO shown in Fig. 2e exhibited two prominent
peaks: a D band and G band. The D band peak appeared at 1354 cm~! associated with the sp3 defects.
Another G band peak at 1580 cm™! attributed to the in-plane vibrations of sp2 carbon atoms and a
doubly degenerated phonon mode (E,; symmetry) at the Brillouin zone center. The Ip/Ig ratio of GO
exhibited 0.99, signifying that the smaller in-plane sp2 domains have been created. The high-intensity
D band in rGO and PEDOT:PSS/rGO compared to the G bands agreed with the expected graphitic defects
of rGO. The oxygen functional groups have eliminated from an insulative GO due to the reduction

process; it induces an improvement into the out-of-plane sp2 vibrations of the carbon lattice and
resulted in higher D band intensity in the Raman spectra of rGO and PEDOT:PSS/rGO [31]. The Raman
spectra of PEDOT:PSS congruence well with previously reported data [51, 52]. The Raman peak for
vibrational modes was observed at 1266 cm™1, 1381 cm™1, 1450 cm™! attributed to the PEDOT group. The
PSS vibrational modes are associated at around 1000 cm™1 and 1110 cm~L It has been implied that the
thiophene-associated band of PEDOT:PSS reduces for the graphitic D and G bands in PEDOT:PSS/rGO.
Since the PEDOT:PSS undergoes a structural transformation to promote the establishment of a unique
=—nr interaction among PEDOT and the surface of the graphitic layers. Hence, in PEDOT:PSS/rGO
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Raman spectra, PSS peaks diminished, and the PEDOT peak is visible. This implied that the rGO was
successfully anchored over the PEDOT:PSS as evidence of an increase in the intensity ratio of D and G

peak (1.94) in composite material, as depicted in Fig. 2e.

3.4 Field emission scanning electron microscopy (FESEM)

The surface morphology of the material is going to be very vital for sensor applications. Therefore,
FESEM images of GO, rGO, PEDOT:PSS, and PEDOT:PSS/rGO were captured and shown in Fig. 3a—d. As
shown in Fig. 3a, the occupancy of graphene layers is thinly crumpled, and wrinkled sheets were
observed due to the oxidation of GO during the synthesis process. The few layers thick and few microns
long rGO sheets, as shown in Fig. 3b, appeared to be less agglomerated, and individual sheets are easily
recognizable as compared to GO (Fig. 3a), which demonstrates the successful reduction of graphene
oxide. The FESEM image of PEDOT:PSS revealed the granular morphology, as demonstrated in Fig. 3c.
However, the FESEM image of PEDOT:PSS/rGO appeared to be more agglomerated due to the re-
formation of the z—z stacking between PEDOT:PSS and rGO layers [53]. The incorporation of rGO into
PEDOT:PSS shows that the interlayer separation of PEDOT:PSS appeared to be loaded with rGO. It can
be inferred that the z—= association has occurred between the layers of rGO and PEDOT:PSS [54], as
shown in Fig. 3d. After that, several flaky agglomerated layers are found in the nanocomposites of
PEDOT:PSS/rGO, which are also confirmed by AFM interpretation, as shown in Fig. 3d.
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Fig.3
(A)

FE-SEM Images of a GO, b rGO, ¢ PEDOT:PSS, and d PEDOT:PSS/rGO composite

3.5 Electrical characterization

The fabrication of the top contact bottom gated FET device was reported in our previous studies [55].
Before spin coat (3000 rpm for 60 s) composite of PEDOT:PSS/rGO over Si/SiO, substrate, it was
washed with acetone followed by 2-propanol and dried using an N, flow gun and dehydrated at 120 °C.
Gold (Au) microelectrode as source and drain (180 nm) coated via an e-beam using the thermal
evaporation method. The target electrodes were developed on the Si/SiO, wafer using the lift-off
method and used as a substrate for the OFET configuration. The bottom gate top contact OFET
geometry was used on commercially available Si/SiO, substrate for the device transport characteristics,
as shown in Fig. 4a. The formation of useful ohmic contacts confirmed by measuring the linear
current—voltage (I-V) curve, as shown in Fig. 4b. The I-V characteristics of the PEDOT:PSS/rGO sensor
exhibited the resistance value of 9.4 kQ. The effect of blending rGO into PEDOT:PSS resulted in
significant improvement in the conductivity, as depicted in Fig. 4b. The electrical characteristics, as
shown in supporting information (Fig. S1), are the output and transfer characteristics curve of p-type
PEDOT:PSS, which consists of a positively charged PEDOT chain and negatively charged PSS. The
output and transfer characteristics of PEDOT:PSS/rGO are demonstrated in Fig. 4c, d. Gate potential
was applied by varying Vs from O to — 20 V with a step of - 5 V while measuring the output

characteristics curve. The transfer characteristics curve (Ipg - Vgs) at constant Vpg = - 10 V was
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measured with gate bias varying between the potential window - 40 to + 40 V for PEDOT:PSS and
PEDOT:PSS/rGO nanocomposite.

.
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The PEDOT:PSS exhibited carrier mobility of ~ 0.00549 cm? V-1s-1 which is approximately
comparable with the previous report [56]. The obtained threshold voltage is Vy =33 Vat Vpg=-10V
with current on/off ratio 102. As compared to pristine PEDOT:PSS, the mobility in PEDOT:PSS/rGO
relatively increases from ~ 0.00549 cm?2 V-1s71to ~ 0.02 cm?/Vs. The increase in mobility attributed to
the rGO blending in PEDOT:PSS, which causes phase separation between PEDOT and PSS, enhances the
PEDOT rich domains with longer conductive pathways leading to an increase in carrier mobility [57].
The fabricated PEDOT:PSS/rGO OFET device revealed excellent p-type behavior with average carrier
mobility of ~ 0.02 cm?/Vs at Vpg = - 10 V. The threshold voltage (V=27 V) was extracted from the linear
fit of |Ipg|1/2 versus Vgg plots in the saturation regime. Moreover, the multilayers of graphene are a
zero-overlap semimetal and contain both holes and electrons as charge carriers. The additional
availability of the holes as a charge carrier in the PEDOT:PSS/rGO composite enhances the mobility. In

addition, the increased average crystallite size and surface morphology also contributed to improved
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mobility [58, 59], which are also supported by GIXRD and AFM interpretation. In OFET, the device
current depends on mobility, and higher mobility materials have a higher current, which can be
successfully employed to detect heavy metal ions. The carrier mobility was calculated using the

transfer curve according to the following equation (see Table 2):

SSI_{{\text{D}1} = \left( { \frac{WCi}{{2L}} } \right) \mu (V_{{\text{G}}} - V_{{\text{T}}} )A{2},SS
(2)

Table 2 The mobility and current on/off ratio of the materials

where I is the drain current, u is the charge carrier mobility, C; is the capacitance per unit area of the
dielectric layer (SiO,, 300 nm, Ci =11 nF cm™2). Vg signifies the gate voltage, Vr is the threshold voltage,
W=200 pm and L =50 pm is the width and length of the channel, respectively. These results are in

accordance with the earlier reported data [60,61,62]

3.6 Detection of heavy metal ions

All detection tests (sensing experiment) were conducted at room temperature. An organic field-effect
transistor (OFET) architecture based on PEDOT:PSS/rGO channel was employed for these experiments,
as presented in Fig. 5a. The channel conductivity was modulated by an Ag/AgCl reference electrode
immersed in the electrolyte containing heavy metal ions by applying a voltage between the source and
the drain electrode. OFETs exhibit a novel organic transistor configuration that facilitates low-voltage
performance in water without a complex multi-layer pattern structure. The drain current (Ipg) was
monitored during the cumulative incubation of the HMIs solution to the OFET sensor. OFET Sensing
behavior of the final device (PEDOT:PSS/rGO) was tested to detect different heavy metal ions with
concentrations ranging from 1 to 60 nM. The OFET sensor fabricated with PEDOT:PSS did not explore
to heavy metal ion detection due to low electrical conductivity. The increase in electrical conductivity
can be clearly seen after rGO blending, as depicted in Fig. 4b. The rGO material was utilized in the
present investigation to enhance electrical conductivity in PEDOT:PSS-conducting polymer for OFET

sensing of heavy metal ions.
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concentration

Then, the device was tested with common heavy metal ions including Hg2*, Cd2*, Pb2*, Cu2*, Zn2+,
Na*, and Fe3* to verify the selectivity. The strong response to Hg2* ions was observed since it has a
greater binding affinity to carbon allotropes than other heavy-metal ions. Our findings supported

with the previous report for the heavy metal ion detection order Hg?* > > Cd2* > Pb2* are attributed to a

carbon-based material [63]. Therefore, the output characteristics (Ipg vs. Vpg) of the OFET sensor for

Hg?2* detection from 1-60 nM at Vs = 0.2 reported in the present research work, as shown in Fig. 5b.
The drain current of the PEDOT:PSS/rGO channel decreased significantly due to the diffusion of a liquid
drop containing Hg2* on the top of the channel, as shown in Fig. 5b. The sensor was tested at low gate
voltage to avoid degradation due to doping and hydrolysis. The applied gate voltage should be well
below 0.7 V to secure a stable device performance [64]. The decrease in drain current (Ips) was observed

as a function of the drain voltage (Vpg = - 0.1V) and the gate voltage (Vgs = 0.2 V) in response to Hg2*

ions exposure. The accumulation of Hg2* causes to migrate the ions inside the grain boundaries and
interrupting the flow of carrier concentration in the channel, resulting in a decrease in conductivity, as

shown in Fig. 5c.

An OFET-sensing behavior based on drain current modulation was observed in response to a gradual

increase in Hg2* ions concentration by diluting the stock solution. The obtained detection limit in the
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present investigation for Hg2* sensor is comparatively low based on earlier reported organic-
conducting polymer, as demonstrated in Table 3. The sensor performance was tested in the presence of
DI water to examine the degradation of the sensor using the transfer characteristic curve on a linear
scale, as shown in supporting information (Fig. S4). The sensor was stored in a vacuum desiccator and
exposed immediately by a drop of DI water after taking samples from ambient to measure the transfer
curve of PEDOT:PSS/rGO. The device maintained a good performance over a long time (30 days). The

negligible shift in sensor performance was perceived due to the diffusion of water molecules.

Table 3 A comparison of the detection limit for the present Hg2* OFET sensor with
previously reported literature

The specificity of the (PEDOT:PSS/rGO) OFET sensor was investigated when it was exposed to solutions

contain interfering ions such as Cd2*, Pb2*, Cu?*, Zn2*, Na*, and Fe3* ions, as shown in supporting
information (Fig. S2). In the sensor characteristics, the most influential parameter is sensitivity. It is

defined as the ratio of variation in current after adding ion (AI=1I — Iy) to the initial current (Iy). The
highest sensitivity was obtained for Hg2* ions compared with the other metal ions, as depicted in
supporting information (Fig. S3). The obtained drain current response was in the following order Hg2+

> >Cd2* > Pb2* for PEDOT:PSS/rGO sensor, while Cu2*, Zn2*, Na* and Fe3* exhibited very weak

response, as shown in supporting information (Fig. S2). The calibration curve of drain current

response versus Hg2* concentrations (1-60 nM) is shown in Fig. 5d. The obtained linear regression

coefficient of 0.9838 was derived from the linear relationship between drain current responses versus

Hg2* concentrations. The 30 method was applied to calculate the limit of detection (LOD), as mentioned
in the following equation:

SSDL\, =\, 3\sigma /m,$$
(3)

where ¢ is the standard deviation, and m is the slope of the calibration line. Therefore, the obtained LOD

of the sensor is 2.4 nM. Based on this measurement, the detection limit is 2.4 nM, as shown in Fig. 5c,
but the sensor still exhibits a response to Hg2* up to a 1 nM concentration. Selectivity histogram
exhibiting responses to the various analyte (viz. Hg2*, Cd2*, Pb2*, Cu2*, Zn%*  Na*, and Fe3*) is
showed in supporting information (Fig. $3), it exhibits clear distinction of Hg2* ions compared with

other ions. The PEDOT:PSS/rGO OFET sensor reacted within few seconds after incubation of the Hg2+
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ions.

4 Conclusions

In summary, we have successfully incorporated rGO into PEDOT: PSS, which is resulted in the
significant enhancement of structural, morphological, and electrical properties of the PEDOT:PSS/rGO
nanocomposite. Then OFET sensor platform based on PEDOT:PSS/rGO was explored for Hg2* ion
sensing with a low detection limit of 2.4 nM. The selectivity of the sensor was verified by the exposure
of various analyte (viz. Cd2*, Pb2*, Cu?*, Zn?*, Na*, and Fe3+). The sensor selectively responded to
Hg2* within 2—3 s after the exposure of ions solution. This sensor offers a good responsive route for
selective, sensitive, high-performance, low-cost detection, user-friendly, and portable. Moreover, the
sensor was stable in an aqueous medium containing metal ion solution. These results suggest an
incredible potential for the commercialization of cutting-edge OFET sensor gadgets in various fields,
such as smart health care, environmental monitoring for water purification, biomedical diagnostics,

manufacturing, and military industries.
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