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Abstract

Sulfur dioxide (SO,) is prominent as hazardous gas owing to its unpropitious effects on the
ecosystem. In this report, a flexible SO, gas sensor is reported by solvothermally synthesized
crystalline nickel(II)benzenetricarboxylate metal—organic framework (Ni-MOF) modified
with hydroxyl group (—OH) activated single wall carbon nanotubes (SWNTs) and multi-
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walled carbon nanotubes (MWNTS), respectively. Introduction of -OH-SWNTs and —OH—
MWNTs played crucial role in the improvement in electrical and morphological properties of
Ni-MOF as well as boosted the sensing ability toward SO, gas at room temperature. The
structural and spectroscopy properties of pristine Ni-MOF, Ni-MOF/—OH—-SWNT's and Ni-
MOF/—OH-MWNT's were studied by X-Ray diffraction (XRD) and Fourier-transform infrared
spectroscopy (FTIR), respectively. Atomic force microscopy (AFM) and field emission
scanning electron microscope (FESEM) were used for the morphological analysis of
synthesized material. The selective response of Ni-MOF/—OH-SWNT's and Ni-MOF/—OH-
MWNTs toward SO,, NO,, NH3 and CO analytes (0.5—15 ppm) was withal studied by
monitoring the changes in electrical resistance of the material at room temperature. The
present study reveals that doping of —-OH-SWNTs and —OH-MWNT's into the MOF leads to
efficient increment in the sensing characteristics. The composite of Ni-MOF/—OH-SWNTs
exhibited better sensing response (10 s) with less recovery time (30 s) for 1 ppm concentration

along with considerable sensitivity (0.9784) and selectivity toward SO, gas.
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1Introduction

In today's era environment protection interest is substantially grown in the human
community from numerous air pollutants engendered from combustion exhaust. Sulfur
dioxide (SO), nitrogen dioxide (NO,), ammonia (NH3), carbon monoxide (CO), other volatile
organic compounds (VOCs) relinquished from prodigious industrial progress that uses sulfur,
besides above permissible exposure limit (PEL) mentioned by occupational safety and health
administration (OSHA). These gases play a vital role in chemical industries in oil refining, coal
burning and several indoor and outdoor activities [1, 2, 6, 7] and further get greatly exposed in
the environment. Every day an ample number of gases become exposed in the ecosystem by
one and many reasons. Apart from these gases, SO, is one of the major hazardous gases
contributes to infrequent environmental degradation activities such as acid precipitation, haze
formation and visibility degradation. However, day by day increasing health issues due to the
contaminated environment is danger alarm for human being as well as the whole ecosystem
to pursuit for significant solutions which can give relief to the society. Most importantly, we
cannot stop breathing; moreover, we can rely on the designators which can provide signals of
hazard-free places for the safety and protection for human beings. So it is an exigent need for
development of room temperature operated gas sensors undergoing idyllic characteristics of
sensor response time, recovery time and sensitivity using cost-effective products to reach in
economically poor sectors also. In the twenty-first century, the demand for real-time, low

cost and small size devices [8,9,10] has been continuously initiating for gas sensing

From last few decades, organic conducting polymers (OCPs), carbon nanomaterials
(graphene, carbon nanotubes, nanowires, etc.), metalloporphyrins, metal oxides, etc., (1, 2, 4,
13,14,15,16,17,18] are most explored materials for research and industrial communities due to
their ideal electrical, chemical, mechanical and morphological properties. These materials
secured their place in sensor technology owing to their above-mentioned properties; however,
despite all favorable properties still these materials have some unresolved limitations like huge
response and recovery time, sensing at high temperature, instability at the normal

environment, etc. (19,20,21].
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However, to overcome all these above-mentioned issues researchers are optimistic toward the
utilization of favorable properties of these individual materials by adopting the composition of
these materials and overcoming their limitations. On that line, carbon nanotubes (CNTs) are
widely accepted material among the research community as an excellent platform for sensing
applications. Interaction between CNTs and gas molecules is responsible for tempting the
electronic and mechanical properties as well as the thermal stability of CNTs. The CNTs are
chemically inert having architecture of large surface-to-volume ratio provided by the hollow
cores and outside walls of nanotubes, offering them enormous gas absorptive possessions.
CNTs are possible to make highly interactive through an activation with acidic groups, for the
achievement of desirable sensitivity toward gas analytes. Moreover, CNTs have undergone
properties like less power consumption, cost-effectiveness, high compatibility with

microelectronic processing, etc. All these desirables offer CNTs as the ultimate scope for the

On the other hand, MOFs have secured their place in the group of advanced materials owing to
their tunable properties, highly porous structure along with large specific surface area and
thermal stability as well [27,28,29,30]. MOFs are known as porous coordination polymers
built a network from central metal coordinated with organic ligands. Such networking
copolymers are highly demanding for catalysis, gas storage, sensing, drug delivery, adsorption
[36] with a microporous structure [37], highly desirable for sensitive gas adsorption
phenomena. In spite of all these desirable properties, MOFs are insulators in nature [38, 39].
More recently, pG-Cu BTC, pG-UiO 66 and pG-ZIF8 MOFs investigated to enhance sensing
performance [40]. These incredible properties and performance of MOFs sparked extensive
research in the fields of chemical sensors.

To utilize the anticipated properties of CNTs and MOF, Ni-BTC is the isostructural with Zn-
BTC and Co-BTC MOFs reported by Yaghi et al. [41]. CNTs have walls of graphene sheets
which lead n—= electron configuration to interact functional group with MOF [42]. In the
present investigation, CNT/MOF composite was synthesized and utilized as a chemical gas
sensor. SWNTs and MWNT's were functionalized with nitric acid for activation toward
sensitivity and used as a backbone for a synthesized framework. The functionalized SWNT's
and MWNTSs incorporated into Ni-MOF using a solvothermal method, respectively. The new
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composite materials Ni-MOF/—OH-SWNT's and Ni-MOF/—OH-MWNTs were employed for

chemiresistive detections of SO,, NO,, NH3 and CO analytes at room temperature.

1.1 Experimental details

1.1.1 Functionalization of SWNTs and MWNTSs

The functionalization of SWNTs and MWNTs with hydroxyl (—OH) groups was done by
adapting chemical methodology [43]. SWNTs (diameter: 1-6 nm, length: 0.5—3 pm) and
MWNTs (diameter: 7—16 nm, length: 12—15 pm) were purchased from Sigma-Aldrich. To
produce —OH-SWNTs, 1.5 mg SWNTs mixed with 10 ml of concentrated nitric acid and
further ultra-sonicated for 60 min with low power at room temperature. After ultrasonication,
100 ml of deionized (DI) water was added into the above mixture. The final solution was dried
in an oven at 80 °C for 24 h to evaporate remained water molecules in the precipitate. The

same steps were repeated for the preparation of —-OH-MWNTSs.

1.1.2 Synthesis of pristine Ni-MOF, Ni-MOF/—OH-SWNTs and Ni-MOF/—OH-
MWNTs

The pristine Ni-MOF was synthesized using a solvothermal method [44 ]. Nickel(II) acetate
tetrahydrate (0.7 g of 1.41 mol) and 1,3,5 benzenetricarboxylic (0.2 g) mixed with 20 ml of DI
and continuously stirred for 30 min at room temperature. Further, the above mixture was
transferred in Teflon-coated autoclave and heated up to 170 °C for 12 h. in oven. The resulting
green precipitate was cooled at room temp.

For the synthesis of Ni-MOF/—OH-SWNT's and Ni-MOF/—OH-MWNTSs, above experiment was
followed by the addition of 10 ml —OH-SWNTs and —OH-MWNTSs, respectively, into the
mixture nickel (IT) acetate tetrahydrate and 1,3,5 benzenetricarboxylic. Synthesized materials
could be differentiated by their color appearance as shown in Fig. 1. Pristine Ni-MOF
resembles a light green color (Fig. 1 (a), Ni-MOF/—OH-SWNTs and Ni-MOF/—OH-MWNTs
reflected light and dark gray color, respectively, as shown in optical images Fig. 1 (b) and (c).
The synthesized materials were dropped cast on silver electrode-coated flexible polyvinyl
chloride sheets having a submicron gap between two electrodes shown in Fig. SI 1.
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Fig.1
(a) (b) (c)

Optical image a pristine Ni-MOF, b Ni-MOF/—OH-SWNTs and ¢ Ni-MOF/—OH-MWNTSs composite

1.1.3 Instrument details

The XRD patterns were recorded within the range of 5—50° with the help of BRUKER D8
ADVANCE diffractometer using source Cu ka (A=1.5406 A°), where voltage and current were
held at 40 kV and 40 mA, respectively. The FTIR spectroscopy was done by Alpha ATR, Bruker
with ZnSe window having range 4000—500 cm~L. The electrical (I/V) characterization was
carried out using a Keithley 4200A semiconductor parameter analyzer (SPA) with a range
between -1and 1V, whereas surface morphology and roughness were done by FESEM and
AFM using Hitachi High-Tech, S-4800 with an operating voltage 15 kV and Park XE-7

system, respectively.

The gas sensing study was carried out using an indigenously developed dynamic gas sensing
system (Fig. 2) as reported earlier [42]. For data collection purposes, the gas sensing device
was connected to the source meter semiconductor parameter analyzer (Keithley SPA-4200A).
Dry air and targeted gas flow were controlled by (Mass Flow Controller (Alicat)) MFC-Non-
corrosive and MFC-corrosive, respectively, with a flow rate of 200 SCCM. For desired gas

concentrations and storage, Tedlar bag was used. The sensing devices were tested using a ~

8 cm? airtight chamber.
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Fig.2
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Indigenously developed a dynamic gas sensing system

2 Results and discussions

2.1 Structural, spectroscopic and electrical characterizations

2.1.1 X-ray diffraction (XRD)

Figure 3 (a) and (b) shows the XRD patterns for pristine Ni-MOF and its composite with —OH-
SWNTs and —OH-MWNT's named as Ni-MOF/—OH-SWNT's and Ni-MOF/—OH-MWNTs,
respectively. All the diffraction patterns of pristine Ni-MOF (Fig. 3 (a)) were confirmed by the
reported pattern [45]. DIFFRACTION.EVA software was used for crystallinity calculation. In
pristine material, the crystallinity was observed about 40%, whereas 38% and 39%
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crystallinity was observed in composite Ni-MOF/—OH-SWNT's and Ni-MOF/—OH-MWNTs,

respectively. The intensity of composite materials decreased as compared to pristine material

Ni-MOF. It indicates that there are minute changes in the crystal structure of MOF after
incorporation of ~-OH-SWNTs and —OH-MWNTs into Ni-MOF. In full-range XRD patterns
peaks look like the same, however, in short-range (Fig. 3 (b)) XRD patterns distinguish the
presence of extra graphitic peaks in composite Ni-MOF/—OH-SWNTs (26.189° and 44.759°)
and Ni-MOF/—OH-MWNTs (26.251° and 44.814°) compared to pristine Ni-MOF [46]. These

eminent peaks confirm the successful incorporation of ~-OH-SWNTs and —OH-MWNT'Ss in Ni-

MOF MOF.
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MOF/-OH-MWNT's
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The Debye—Scherrer’s formula (Eq. 1) was used for calculating crystallite size (D) of pristine
Ni-MOF and composite Ni-MOF/—OH-MWNTs and Ni-MOF/—OH-SWNTs materials.

SSD = \frac{0.9\lambda }H{\left( {\beta {\text{ cos}}\theta } \right)}},SS
(1)

whereas 1 (1.5406 A) is the wavelength of x-ray source radiation. By using Gauss fitting, full
width at half maxima (FWHM) (B) is calculated, pristine Ni-MOF was 0.125 and composite Ni-
MOF/—OH-SWNTs and Ni-MOF/—OH-MWNTSs were 0.127 and 0.129, respectively. The 6°
(12.44°) is the Braggs angle of diffraction. The Ni-MOF exhibits monoclinic crystal system
[41]. The calculated crystallite size for pristine Ni-MOF was 66.22 nm and for composite Ni-
MOF/—OH-SWNTs and Ni-MOF/—OH-MWNTSs were 65.69 nm and 64.68 nm, respectively.

2.1.2 Fourier-transform infrared spectroscopy (FTIR)

Figure 3 (c) shows the resultant peaks of FTIR data for pristine Ni-MOF and composites Ni-
MOF/—OH-SWNTs, Ni-MOF/—OH-MWNTS, respectively. The presence of absorption bands at
1350—1650 cm ™! reflects the Ni ion coordinated COO moiety [45]. In composite Ni-MOF/—OH-
SWNTs and Ni-MOF/—OH-MWNTs peaks reflected at 3432 cm™! attributed stretching
vibration of hydroxyl groups (—OH) [47]. The broad and sharp stretching peak was observed at
3033-2800 cm™! for N—H (amine salt) group in pristine Ni-MOF. The intensity of N—H group
was gradually decreased with the successive addition of —-OH-SWNTs and —OH-MWNTSs in
Ni-MOF. This evidence confirms the successful formation of Ni-MOF/—OH-SWNT's and Ni-
MOF/—OH-MWNT's composites.

2.1.3 Electrical (1/V) characterization

The pristine Ni-MOF resembled R = ~ 26MQ (Fig. 3 (d)); however, moderate enhancement has
been observed in composite Ni-MOF/—OH-SWNTSs (R = ~ 16K Q) and Ni-MOF/—OH-MWNTs
(R= ~78 KQ). From these observations, it can be concluded that bridging network of —OH-
SWNTs and —OH-MWNTs helpful to enhance electron transfer in agglomerated
microstructure [48]. All measured curves are ohmic in nature with almost symmetric
behavior for both composite materials in the negative and positive regions of an applied

voltage. This confirms proper connection established between silver electrodes and composite
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materials. The formation of —-OH-SWNTs and —OH-MWNT's network in Ni-MOF was
encouraged to enhance charge transfer in composite materials. The agglomerated micro-
network of —OH group-activated SWNTs and MWNT's into Ni-MOF has created free-electron
charges. This new network in composite Ni-MOF/—OH-SWNTs and Ni-MOF/—OH-MWNTs
materials offered a conductive pathway responsible for charge transport through the micro-
network [49, 50].

2.2 Morphological characterizations

2.2.1Field emission scanning electron microscope (FESEM)

The surface morphology for synthesized materials was characterized using FESEM as shown
in Fig. 4 (a), (b) and (c). The pristine Ni-MOF (Fig. 4 (a)) has resulted in an agglomerated
microstructure with an average grain size 111 nm. The successfully synthesized composites
Ni-MOF/—OH-SWNTs and Ni-MOF/—-OH-MWNTs (Fig. 4 (b) and (c), respectively) have
resulted in proper formation of networks in microstructure materials. The irregular surface
causes more roughness results in a larger contact area with the gaseous analytes. The surface
roughness of material is directly proportional to the gas sensitivity [51]. Moreover, here
SWNTs and MWNTs created a bridge between agglomerated microstructure and bound them

with each other.

Fig. 4
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FESEM images (a, b and c) and AFM images (d-1, e-1, and f-1) with surface roughness parameter (d,
e and f) for pristine Ni-MOF, Ni-MOF/—OH-SWNTs and Ni-MOF/—OH-MWNTSs materials,

respectively

2.2.2 Atomic force microscope (AFM)

The AFM characterization was further carried out for the study of materials roughness, the
surface area of the prepared materials. Figure 4 (d), (e) and (f) shows the surface roughness
parameter of Ni-MOF, composite of Ni-MOF/—OH-SWNTs and Ni-MOF/—OH-MWNTs
materials measured from AFM images shown in Fig. 4 (d-1, e-1, f-1), respectively. Composite
of Ni-MOF/—OH-SWNTs and Ni-MOF/—OH-MWNT's materials surface exhibited distinct
variations in the morphology, compared with pristine Ni-MOF material. Figure 4 (d—f) shows
the increment in the surface roughness parameter such as max (maximum roughness), Rpv
(peak to valley roughness), Rq (root mean-square roughness), Ra (avrg. roughness), Rz (ten

point avrg. roughness), Rsk (skewness) and Rku (avrg. characteristics in height direction).

2.2.3 Gas sensing measurement

The dry air was used to reside initial conditions to achieve baseline, avoid any impact from
humidity and balancing targeted gas concentrations. Once the initial condition (baseline) was
achieved, targeted gas was exposed to various concentrations. Figure 5 (a) shows dynamic gas
sensing of SO, gas with various (0.5, 1, 5, 10 and 15 ppm) concentrations for Ni-MOF/—OH-
SWNTs and Ni-MOF/—0OH-MWNTs sensors. While comparing both composite materials
sensing performance, it has been observed that Ni-MOF/—OH-MWNT's took a long time for
recovery. Moreover, it was comparably less sensitive than that Ni-MOF/—OH-SWNT's sensors.
The —OH-MWNTSs holding multi-walled carbon nanotubes with unique pores of honeycomb
structure holding gas analyte for a longer time [52]. Besides, both sensors have shown a stable
baseline in the presence of dry air. The linear regression (Fig. 5 (b)) equations were y = 3624.1x
+11,007 (R% = 0.9784) and y = 730.86x + 14,063 (R2 = 0.9591), indicating sensing controlled for
both Ni-MOF/—0OH-SWNTs and Ni-MOF/—-OH-MWNTSs, respectively.

Fig.5
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Figure 5 (c) represents the dynamic gas sensing performance for SO,, NO,, NH3 and CO gases
at 0.5—15 ppm concentrations by changing the ohmic resistance of prepared microdevices.
Figure 5 (d) shows a noticeable change in R squared value based on linear regression equations
for SO,, NO,, NH3 and CO gases. It was observed that the prepared Ni-MOF/—OH-SWNTs
microdevices showed better sensitivity toward SO, analytes compared to other analytes.
Figure 6 shows the corresponding results of the sensing measurements. The reproducibility of
a sensor plays a crucial role in the gas sensor technology as most important parameters, in the
present study Ni-MOF/—OH-SWNTs sensor has shown remarkable reproducibility (Fig. 6 (a))
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toward SO, analyte at 1 ppm. Response time (10 s) and recovery time (30 s) are one of the key
parameters measured for SO, analytes at 1 ppm using Ni-MOF/—OH-SWNT's sensor shown in
Fig. 6 (b). Ni-MOF/—OH-SWNTSs sensor was repeated six times to calculate standard error bar
for various gases shown in Fig. 6 (c). It was observed that at lower gas concentrations more
deviation compared with higher concentrations. The selectivity performance for Ni-MOF/—
OH-SWNTs and Ni-MOF/—OH-MWNTSs was investigated and shown in Fig. 6 (d). It was
observed that SO, is highly selective to Ni-MOF/—OH-SWNT's sensor than other exposed
analytes and composite material. The blank —OH-SWNTs and —OH-MWNTSs sensing
performance is showed in Fig. SI 2 (a) and (b), respectively (supporting information).

Moreover, magnified various gases sensing at 0.5 ppm concentrations is shown in Fig. SI 2 (c).

Fig. 6
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error bar for Ni-MOF/—OH-SWNTs using various gases. d Selectivity performance of Ni-MOF/—OH-
MWNTSs and Ni-MOF/—OH-SWNTSs sensor toward various gas analytes

Table 1 shows the corresponding results of the sensing measurements based on the previously
reported literature, and it was observed that Ni-MOF/—OH-SWNT's sensor has shown

significant improvements in lower detections and operating conditions toward SO, analytes.

Table 1 Reported literature sensing parameters for SO, sensor

The sensing mechanism of the reported sensor widely dependent upon zigzag networking in
the agglomerated microstructure. The —OH activated SWNTs and MWNT'Ss created a highly
sensitive surface network adopting favorable conditions for the transformation of electrons
from composite material. In an earlier report [42], Ni-MOF/—OH-SWNT's material
represented holes as a majority carrier. When electron donor gas analytes interact with
respective material, it will create recombination with each other. Due to this fact, holes get

decreased in material, accountable for increment in resistance of the material.

3 Conclusions

The Ni-MOF/—OH-SWNT's and Ni-MOF/—OH-MWNT's composites were successfully
synthesized by the solvothermal method. The structural, spectroscopic, morphological
characterizations confirmed the successful incorporation of —OH activated SWNTs and
MWNTs in Ni-MOF MOF. The I/V characteristic shown a drastic change in the electronic
properties of pristine Ni-MOF compared to composite Ni-MOF/—0OH-SWNTs and Ni-MOF/—
OH-MWNT's materials. -OH-SWNTs and —OH-MWNTs created agglomerated
microstructured networks owing to favorable changes in the electrical properties of composite
materials. Apart from the characterizations, synthesized materials were tested for various gas
analytes such as SO,, NO,, NH; and CO gases at 0.5—15 ppm concentrations. The response of
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the synthesized sensor toward analytes was monitored by observing changes in ohmic
resistance of prepared microdevices. A Ni-MOF/—OH-SWNTs sensor has shown remarkable
sensor properties in terms of less response time, quick recovery time, good sensitivity,
selectivity and better reproducibility. The detection level observed for Ni-MOF/—OH-SWNT's
gas sensor toward SO, was 0.5 ppm. The reported sensor has undergone ideal properties of the
sensor with cost-effectiveness and room temperature operation with ease of material
preparation.
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