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Abstract

Some generalizations of the concept of a supplemented lattice, namely a soc-

supplemented-lattice, soc-amply-supplemented-lattice, soc-weak-supplemented-lattice,

soc- -supplemented-lattice and completely soc- -supplemented-lattice are

introduced. Various results are proved to show the relationship between these lattices.

We have also proved that, if  is a soc- -supplemented-lattice satisfying the summand

intersection property (SIP), then  is a completely soc- -supplemented-lattice.
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Mutlu [1], Tohidi [2], Wang and Ding [3], Wisbauer [4] and many others have studied the

concept of a supplemented module and its generalizations. Let  and  be submodules

of a module .  is called a  of  if  and  is minimal with

respect to this property. A module  is called an    if for

any two submodules  and  of  with ,  contains a supplement of . A

module  is called  if each submodule of  has a supplement that is

a direct summand of .

In 2012, Tohidi [2] introduced some generalizations of the concept of a supplemented

module namely, a soc-supplemented-module, a soc-amply-supplemented-module, a

soc-weak-supplemented-module, a soc- -supplemented-module and a completely soc-

-supplemented-module. He proved various results to show relationship between these

modules. He showed that, a direct summand of a soc-amply-supplemented-module is

also a soc-amply-supplemented-module.

Călugăreanu [5] used lattice theory in module theory and studied several concepts from

module theory in lattice theory. He introduced the concept of a supplement in terms of

elements. Alizade and Toksoy [6] introduced the concepts of an ample supplement and

an amply supplemented lattice in the context of a complete modular lattice. In [7] they

also introduced the concepts of a weak supplement, a weakly supplemented lattice in

the context of a complete modular lattice.

In this paper, we introduce the concepts of a soc-supplemented-lattice, a soc-amply-

supplemented-lattice, a soc-weak-supplemented-lattice, a soc- -supplemented-lattice

and a completely soc- -supplemented-lattice and obtain some results in the context of

modular lattices.

Throughout in this paper  denotes a lattice. Wherever necessary we assume that

 exists for any  and .

2. Preliminaries

We recall some terms from lattice theory. These and undefined terms can be found in

Grätzer [8].

Definition 1

A lattice  is called modular if for  with , .

Definition 2

If  are such that  and  then we say that  are direct

summands of  and we write . We say that  is a direct sum of  and .
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Definition 3

Let  be a lattice with 0. An element  is called an atom, if there does not exist any

 such that .

Definition 4

A lattice  with 0 is said to be an atomistic lattice if every non-zero element  is the

join of atoms of  contained in .

Definition 5

[5, p. 47]

The join of all atoms of , denoted by , is called the socle of the lattice .

For ,  is the socle of the lattice .

We recall some definitions from Alizade and Toksoy [[6], [7]] and from Călugăreanu [5].

Definition 6

An element  is said to be small in  if  for every . We then write

.

Definition 7

An element  is called a supplement of an element  if  and  is

minimal with respect to this property.

Lemma 1

Let  be a modular lattice and .  is a supplement of  in  if and only if 

and  is small in .

Proof

Suppose that  is a supplement of  in . Then  and  is minimal with respect

to this property. Let  for some . Then

, a contradiction. Hence  is small in .

Conversely, suppose that  and  is small in . Let  for some

. We have , a contradiction. Hence  is a supplement

of  in .

Remark 1
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The above equivalence does not hold in a nonmodular lattice.

Example 1

In the lattice shown in Fig. 1,  and  is small in  but  is not a

supplement of .
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Fig. 1.

Definition 8

An element  is said to have ample supplements in  if for every element 

with ,  contains a supplement of  in .

A lattice  is said to be amply supplemented if every element  has ample

supplements in .

Definition 9

An element  is a weak supplement of  in  if and only if  and

.

A lattice  is said to be weakly supplemented if every element  has a weak

supplement in .

3. Soc-s-lattices, soc-a-s-lattices and soc-w-s-lattices

In this section,  denotes a lattice with  and .

Definition 10Typesetting math: ��%
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Let ,  and  be such that , then  is called a soc-

supplement of  in case .

An element  is called a soc-supplement element if  is a soc-supplement of some

element in .

A lattice  is called a soc-supplemented lattice if every element of  has a soc-

supplement in . In short we say that  is a soc-s-lattice.

Example 2

Every complemented lattice is a soc-supplemented lattice.

Example 3

Let  be a finite lattice with only one atom and two dual atoms whose meet is different

from that atom. Then  is not a soc-supplemented lattice.

Definition 11

A lattice  is called a soc-amply-supplemented lattice if , where  imply

that  has a soc-supplement  such that . In short we say that  is a soc-a-s-

lattice.

An element  is called a soc-amply-supplemented element if , where

 imply that  has a soc-supplement  such that . In short we say

that  is a soc-a-s-element.

Let  be a lattice and .  is said to have a soc-ample-supplement in  if for any

 with ,  has a soc-supplement  such that .

Example 4

Every atomistic complemented lattice is a soc-a-s-lattice.

Example 5

In the lattice  shown in Fig. 2, for elements , , here  but  is not a

soc-supplement of  because . Hence  is not a soc-a-s-lattice.
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Fig. 2.

The following two results are analogues of Proposition 2.1 and Lemma 2.2 from Tohidi [2].

Theorem 2

Let  be a modular soc-a-s-lattice and  be a direct summand of . Then  is a soc-a-s-

element.

Proof

Let  be a soc-a-s-lattice and let  be a direct summand of . Then  for some

.

To show:  is a soc-a-s-element. Let , where . Then

. Since  is a soc-a-s-lattice, there exists

 such that  with  and . Now, by using

modularity, we get

Also, . Hence  is a soc-a-s-element.

Theorem 3

Let  be a modular lattice,  and  be a soc-s-element. If  has a soc-supplement

in  then so does .

Proof
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Suppose that  has a soc-supplement say  in . Then  and

. Since  is a soc-s-element and , there exists 

such that ,  and . Then

. Now, by modularity, we get

Thus,  is a soc-supplement of  in .

Claim

 is a soc-supplement of  in .

Clearly . We have . By modularity, we

get

Thus  is a soc-supplement of  in .

Theorem 4

Let  be a modular lattice and  be soc-supplemented elements. If , then 

is a soc-s-lattice.

Proof

Let  be such that  and  has trivially a soc-supplement 0 in .

Then by Theorem 3,  has a soc-supplement in . Again by Theorem 3,  has a soc-

supplement in . Hence  is a soc-s-lattice.

The following result is analogue of Proposition 2.5 from Tohidi [2].

Theorem 5

Let  be a modular lattice and  be such that . If  and  have soc-ample-

supplements in  then  also has a soc-ample-supplement in .

Proof

Let  be such that . Suppose that  and  have soc-ample-supplements in

.
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To show:  has a soc-ample-supplement in . Let  be such that .

Then  and . Therefore,  and

. Since  and  have soc-ample-supplements in , there exist 

such that  and . Also ,  and ,

. Now  and  implies that . Now,  and

. Therefore, . Now, by modularity, we get

Hence  is a soc-a-supplement of  in .

The following result is an analogue of Theorem 2.6 from Tohidi [2].

Theorem 6

Let  be a modular lattice and . Then the following statements are equivalent.

(i) There is a decomposition , where  with  and .

(ii)  has a soc-supplement  in  such that  is a direct summand of .

Proof

 Let  with  and . Then  and

 which means  is a soc-supplement of  in .

We have  by using modularity. Also

. Hence  is a direct summand of .

 Suppose that  is a soc-supplement of  such that . Then,

 and . Hence  is a direct

summand of .

Călugăreanu [5] developed the concept of an essential element in a lattice with least

element 0.

Definition 12

[5, p. 39]

Let  be a lattice with 0. An element  is called an essential element if , for

any nonzero .
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If  is essential in  then we say that  is essential in  and write  and call  as

an essential extension of .

If  and there is no  such that  and , then we say that  is a

maximal essential extension of .

Theorem 7

Let  be a modular lattice, . Let  be a soc-supplement of  in . If  is an essential

element of , then  is a minimal essential element of .

Proof

Let  be such that . Since  is essential in , , so .

Thus  is an essential element in . Now . Since  is a soc-

supplement of  in , we have  and . Thus .

Hence  is a minimal essential element in .

Theorem 8

Let  be a modular lattice. If every element in  is a soc-s-element, then  is a soc-a-s-

lattice.

Proof

Let  be such that . We have  and since  is a soc-s-element. Let

 be such that ,  and . Thus 

. Also  Thus  and  imply 

is a soc-a-s-lattice.

Definition 13

A lattice  is said to be a soc-weakly supplemented lattice if for any element ,

 there exists  such that  and . In short we say that

 is a soc-w-s-lattice.

An element  is called soc-weak-supplement if  is a soc-weak-supplement of some

element .

Example 6

Every complemented lattice is a soc-w-s-lattice.

Example 7
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In the lattice  shown in Fig. 3, for elements  such that  but

 that is . Hence  is not a soc-w-s-lattice.
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Fig. 3.

The following lemma is an analogue of Proposition 9.8 from Anderson and Fuller [9].

Lemma 9

Let  and  be two lattices and  be a homomorphism satisfying

 then  for  and .

Proof

For  and ,  all atoms of  and

 all atoms of . Now,

Hence, .

We show that a homomorphic image of a Soc-w-s-lattice is a Soc-w-s-lattice under a

condition.
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Theorem 10

Let  be a lattice satisfying . Then any homomorphic image of a soc-

w-s-lattice is a soc-w-s-lattice.

Proof

Let  be an epimorphism and  be a soc-w-s-lattice. To show:  is a soc-w-s-

lattice. Let  then . Since  is a soc-w-s-lattice,  has a soc-weak-

supplement , that means  and . Then

 imply . Now,

Thus  and  implies  is a soc-w-s-lattice.

Lemma 11

Let  be an atomistic lattice and . If , then

.

Proof

Let . It is clear that . Let . Since  is atomistic,

 is an atom of  and . Now,  implies  for all .

Then . Thus .

Theorem 12

Let  be an atomistic modular lattice. If  is a soc-w-s-lattice then every supplement element

of  is a soc-w-s-element.

Proof

Suppose that  is a supplement in . Since  is a soc-w-s-lattice, for any element

 such that , there exists  such that  and . Now,

by modularity, we get  and

 by Lemma 11. Thus

 and  imply  is a soc-w-s-element.

The following result is analogue of Lemma 2.18 from Tohidi [2].

Theorem 13
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Let  be a modular lattice,  and  be a soc-w-s-element. If  has a soc-w-

supplement in , then so does .

Proof

Let  have a soc-w-supplement in , then there exists  such that

 and . Since  is a soc-w-s-element and

, there exists  such that ,  and

 that is . Now, by modularity, we get

and

Thus  is a soc-w-supplement of  in .

Theorem 14

Let  be a modular lattice and , . If  and  are soc-w-s-elements, then  is

a soc-w-s-lattice.

Proof

Let  such that  and let  have a soc-w-supplement 0 in . Then

by Theorem 13,  has a soc-w-supplement in . Again by Theorem 13,  has a soc-w-

supplement in . Hence  is soc-w-s-lattice.

Theorem 15

Every soc-a-s-lattice is a soc-s-lattice and every soc-s-lattice is a soc-w-s-lattice.

Proof

Let  be a soc-a-s-lattice. To show:  is a soc-s-lattice. Let  such that .

We claim: .

Since  is a soc-a-s-lattice, there exists  such that ,  and

. Now, . Thus . Hence 

is a soc-s-lattice.
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Next, let  be a soc-s-lattice. To prove:  is soc-w-s-lattice. Let . Since  is a soc-s-

lattice, there exists  such that  and . Now

 that is . Hence  is soc-w-s-lattice.

Remark 2

The following example shows that the converse of the above theorem need not be true.

Example 8

The lattice  shown in Fig. 2 is a soc-w-s-lattice but not a soc-a-s-lattice. Since, for

, , here  but  is not a soc-supplement of  because .

Hence  is not a soc-a-s-lattice.

4. Soc- -supplemented-lattices, completely soc- -supplemented-
lattices and lattices satisfying the summand intersection property

Definition 14

A lattice  is called a soc- -supplemented-lattice if every element  has a soc-

supplement  such that , for some . In short we say that  is a soc- -

s-lattice.

Example 9

Every complemented lattice is a soc- -s-lattice.

Example 10

In the lattice  shown in Fig. 4, . Here  is a soc-supplement of , but  is not a

direct summand of 1. Hence  is not a soc- -s-lattice.
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The following theorem is an analogue of Lemma 3.1 from Tohidi [2].

Theorem 16

Let  be a modular lattice and  be such that  has a soc-supplement  in 

and  has a soc-supplement  in . Then  is a soc-supplement of  in .

Proof

Let  be a soc-supplement of  in  and  be a soc-supplement of  in .

Then  with  and  with

 that is . Now, by modularity, we get

and

Thus  and  imply  is a soc-supplement of 

in .Typesetting math: ��%
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Theorem 17

Let  be a modular lattice,  be soc- -s-elements and . Then  is a soc- -

s-lattice.

Proof

Let . Then  such that  has trivially soc-supplement  in . Let

 be a soc-supplement of  in , so that  is a direct summand of . Then by

Theorem 16,  is a soc-supplement of  in . Let  be a soc-supplement of 

in  such that  is a direct summand of . Again by Theorem 16, we have  is a soc-

supplement of  in . Since  is a direct summand of  and  is a direct summand of 

then  is a direct summand of . Hence  is a soc- -s-lattice.

Definition 15

A lattice  is said to be completely soc- -s-lattice if every direct summand of  other

than an atom is a soc- -s-element.

Example 11

In the lattice  shown in Fig. 5, direct summands  and  of 1 which are not atoms are

soc- -s-elements. For example,  with  such that 

and , here  is a soc-supplement of  in  which is a direct summand of . Hence 

is a completely soc- -s-lattice.
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Fig. 5.

Example 12

In the lattice shown in Fig. 4, direct summands  and  of 1 which are not atoms are not

soc- -s-element because there is no such  such that  and
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[�]

. Hence  is not a completely soc- -s-lattice.

The concept of the summand intersection property is known in module theory, see

Akalan, Birkenmeier and Tercan [10].

The concept of the summand intersection property is also known in lattice theory, see

Nimbhorkar and Shroff [11].

Definition 16

A lattice  satisfies Summand Intersection Property (SIP), if for any direct summands

 of 1,  is also a direct summand of .

Theorem 18

Let  be a modular lattice. Suppose that  is a soc- -s-lattice satisfying . Then  is a

completely soc- -s-lattice.

Proof

Let  be a direct summand of 1. To show:  is a soc- -s-element. Let . Since 

is soc- -s-lattice, there exists a soc-supplement  of  such that ,

 and . Now, by modularity, we get

. Since  satisfies the property ,  is a

direct summand of 1. So ,  that is

 and . Therefore, .

Thus  is a soc-supplement of  in  which is a direct summand of . Hence 𝑎 is a soc-

⊕ -s-lattice.
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