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Abstract

The research article concerned with developing the qualitative theory for nonlinear fractional
functional differential equations (FFDEs) of arbitrary order with infinite delay involving generalized

Hilfer fractional derivative of the form:

Hggiﬂ#y t)=f(ty); te (0,8,
Iy (04) = g,
y(t)=9@#); te(—o0,0].

Here0 < @ <1,0<8<1y, €R,and 9;,:9;-/:' .,401: ¥ are generalized fractional operators in the
concepts Hilfer and Riemann-Liouville, respectively. Some new and recent results of existence and
Ulam-Hyers-Mittag-Leffler (UHML) stability of solution for the proposed problem will also be
highlighted. The concerned analysis is carried out via using the Banach fixed point theorem, Picard
operator method, and generalized Gronwall’s inequality. Finally, an example is given to illustrate
the effectiveness of our main results.
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1. Introduction

Over the last years, the stability results of functional differential equations have been strongly
developed. Very significant contributions about this topic were introduced by Ulam[1], Hyers|2]
and this type of stability called Ulam-Hyers (UH) stability. Thereafter improvement of UH stability
provided by Rassias[3] in 1978. For some recent results of stability analysis by different types of
fractional derivative operator, we refer the reader to a series of papers[4], [5], [6], [7], [8], [9], [10],
[11],[12], [13], [14].

On the other hand, the Ulam-type stability of delay differential equations (DDEs) was investigated
in[15], [16]. In[15], the results for a DDE were obtained using the Picard operator method, and
in[16] the authors adopted a similar approach to establish the existence and uniqueness results for
a Caputo-type fractional-order DDEs. In the same context[17] the author discussed the existence
and uniqueness of solutions and UH and UH-Rassias stabilities for ¢-Hilfer nonlinear fractional
differential equations (FDEs) via a generalized Gronwall inequality. Sousa and Oliveira [8]
introduced a ¥-Hilfer fractional derivative and established new results to t-Hilfer FDEs that
generalizes some of the studies reported in the literature [ 18], [19]. There were many results on the

existence, uniqueness, and stability solutions for the non-linear FDEs can be found in the articles
[20], [21],[22], [23], [24] and the references mentioned in them.

For the recent review of FFDEs, we will survey some of the works as follows:

D. Otrocol, V. Ilea in[15] studied the UH stability and generalized UH-Rassias stability for the
following DDE

{ v (@) =F(tu(),u(r(?)); telsb],
u(t)=v%(t); t € [a— h,a].

J. Wang and Y. Zhang| 16], proved some results of existence, uniqueness, and UHML stability of
Caputo-type FFDE
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{ CPu(t)=F(tu(t),u(h(?); te(Od,
u(®) =9 (); te[—h0].

Liu etal. in[25] established the existence, uniqueness, and UHML stability of solutions to a class of %
-Hilfer FFDE

Hgehby (t) = f(tu(®),u(h(®)); te(0d),
L™ u(0") =w €R,
u(l) =p(t); te[-h,0].

K.D. Kucche, and P.U. Shikhare in[26] studied the existence, uniqueness of a solution and Ulam type
stabilities for Volterra delay integro-differential equations on a finite interval

{u' () =£(t9(®),9(0®), s 1 (t.,3(s),y(9(s))) ds); t€[0,8], (D
u(t) =¢(t); te[-r0, 0<r<ooc.
Motivated and inspired by the aforementioned work, in this article, we prove the existence,

uniqueness and UHML stability of solutions to a class of for 4-Hilfer problem of FFDEs with infinite
delay

BgelPy () = £ (t.w); te(0,8], (12)
Iy (0Y) =9 R,
y&)=9®); te(—oo,0].

Here Qg;ﬂ ¥ (.)and Jolf'w (.) are ¥—Hilfer fractional derivative of order 0 < a < 1 and type

0 < B <1, and 9— Riemann-Liouville (R-L) fractional integral of order 1 —
(y=a+ B (1 — a)) respectively, ¢ € B (phase space) and f : (0,b] x & — R is a given function.
For each y defined on (—o0, 4] and for any ¢ € [0, b] we denote by g, the element of 4 defined by
v (8)=y({t+8), —oo<s8<0,wherey, (-)represent the history of the state from time —oo
up to time ¢.

The main contributions are highlighted as follows:
* The obtained results more general of previous studies[15], [16], [25].

» The advantages of the problem considered and the importance of obtained results have been
provided in the introduction section. It is the first work concerning fractional functional
differential equations with infinite delay involving 4-Hilfer fractional derivative.

* The formula provided for the solution to FFDEs (1.2) includes the formula for solutions of FFDEs
involving Riemann-Liouville and Caputo fractional derivatives.
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» The existence of a unique solution and the stability of UHML are proved in phase space 4 by
means of the Picard operator method and Banach fixed point theorem and generalized
Gronwall’s inequality.

The rest of the structured this paper as follows. In Section2, we will briefly recall some basic
definitions and the results that are applied throughout the paper. Section3 studies the existence,
uniqueness and UHML stability results on the ¢-Hilfer problem of FFDE (1.2) via using the Banach
fixed point theorem, Picard operator method, and generalized Gronwall’s inequality. At the end, an
example is included to illustrate the applicability of the obtained results.

2. Preliminaries

In this section, we recall the basic definitions and results which related to - fractional calculus (-
R-L fractional integral and derivative, ¥-Caputo fractional derivative, and ¥-Hilfer fractional
derivative) and some results of nonlinear analysis (Picard operator method, fixed point theorems,
and generalized Gronwall’s inequality). Let I = (—o0,b] (b > 0), I =[0,b], I» = (0,b]and

I' = (—00,0], and Let C (I;,R) and C™ (I1,R) be the Banach spaces of continuous functions, n-
times continuously differentiable functions on Iy, respectively. Moreover, for any h € C (I, R), we
have ||h||o = max {|h (¢)| : ¢ € 1}. On the other hand, we have n-times absolutely continuous
functions given by

AC™ (I,R) = {h :I; > R:h™D (8) € AC(Il,]R)},

where AC (I, R) is the space of functions which are absolutely continuous on I . The weighted
spaces Ci—yy (I1,R) and C}_, (11, R) are defined by (see[8])

Cuy (R ={h: b+ R () -y O] "h() € C (1, R) },
C7_y (I,R) = {h I, 5 R:h(t) € C" (I,R);
h® (¢) € Crpy (ILR)},
where 0 < v < 1, with the norms
— 1-
I, = r;gﬂ['ﬁ ) - %@ "h @),
Ihller., = S35 1Pl + A9l
respectively. In particular, if n = 0, we have C{’_w (I1,R) = C1—pyp (I1,R).

Definition 2.1

[27]
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Let & > 0 and % be an increasing function, having a continuous derivative 4’ on I;. Then the left-
sided R-L fractional integral of order e for an integrable function h : I; — R with respect to % on
I is defined by

IePh(t) = 7 [y ¥ () W (@) — 9 (2))*"h(s)ds, t>0.

Definition 2.2

[27]

Let0 < a < 1,h € C (I1,R), and % € C* (I, R) an increasing function such that ¢’ (£) # 0, for all
t € I . Then the left sided R-L fractional derivative of b  of order ex with respect to 4 is given by

P521(t) =55 2 ) 2 *h ()
= i (s L) ¥ @ @B - () h(s)ds, t>0,

provided the right side is piecewise continuous defined on I3.

Definition 2.3

28]

Let0 < & < 1,and h € AC! (I1,R), and let 4 is defined as in Definition2.2. The left-sided Caputo
fractional derivative of a function h of order e with respect to 9 is defined by

CDPh(t) = I (F5 &) ®)
= i ¥ () GO~ %) hY ()ds, >0,

where hg‘) (®) =(WL@) %)h (?).

Definition 2.4

8]

Let0 < @ < 1,and f,4 € C' (I1,R) be two functions and 9 is defined as in Definition2.2. The
left-sided Hilfer fractional derivative of a function A of order e and type 0 < B < 1 with respect to
¥ is defined by

Pty () — gBll—a) A-A)1-a)wy pr .
H @b p (t) = S (ﬁ)%).f0+ h(t); t>0.

One has,
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Hebbh (t) = S~ R (1) ;
where

,'P — (1_18 (1_ ;¢ — 1— s¢
g X0) —(%@)%)’m Ja-e)bp, (1) _(WL@%)JN h(t).
Remark 2.5

We note that, if ¢ (£) = ¢in Definitions Definition 2.1, Definition 2.2, Definition 2.3, then
Joﬁ"{’, 9:;¢ and 09:,;"’ reduces to the classical fractional integral and derivative.

Remark 2.6

FromDefinition2.4, we observe that:

(1)
If ¢ () = t, the operator & 9:;’3 "% can be written as

Hoah — J(ﬁ(l_a) 9.9'0(}_") = Joﬁ(l_a)D}, y Y=a+B(l-a);

9=1.

If = 0, then ¢)-Hilfer fractional derivative # 9% reduces to 953¥, ie #P5¥ = g5

If B = 1, then g-Hilfer fractional derivative & 9:,;‘654’ reduces to 09:,,#’. ie.
H ggiﬂ# — 09;;'/’.

In the forthcoming analysis, we need the following weighted space:
Clyy (11, R) = {h € Ciyy (I,R); FP’h € Cipy (Il,]R)}, (2.1)
where0 <y < 1.

Lemma 2.7

8]

lety=a+pB(1—-a)where0 <a<1and0<B<1. Then ifh € C]_ , (I1,R)we have
Wty — % H goaby

STV GTh = ¥ Hgabvp

and

ggfﬁ J:ﬁtlf h= 95151—&);'# h.
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Lemma 2.8

8]
Let0<a<10<B8<1and heO’l(Il,]R).Thenwehave
Hoohb  g2¥h(t) = h(t).

Lemma 2.9

[27]

Let &y > 0. Then we have

I @) - O = s () — O,
and
7P - v (@) =0, 0<a<l

Lemma 2.10

28]

Fora > 0and A € R \ {0}, we have

S BN @) -9 )= 1 (B P ® - v O)]-1).

Lemma 2.11

8]

Lety=a+B(1—a)where0 < a <1and0 < B < 1 Then, ifh € Ci—yy (I1,R) and
Jolf"“bh € CL_y (I, R) we have

. JU-Al—a)y h(0) _ _
I IR = h(t) - Ly O — 9 (@)
ST h(a)

=h(t) ~ rm @0 - ¢ ().

Lemma 2.12

8]

https://www.sciencedirect.com/science/article/pii/S259003742030025X ...
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Leth € Cy (I1,R), and 0 < ¥ < a < 1. Then we have
A = kL o4 —
I3 h(0)= tln&foﬁ h(t) =0.

Lemma 2.13

[17]

Ifa>0and0 <y <1, then Jo'f,"p (-) is bounded from Cy (I1,R) to C (I1,R). Further, if y < a,
then Jo‘f‘l’ (+) is bounded from C, (I1,R) to C (I1, R).

Definition 2.14

[16]

Let (Y, d) be a metric space. Now T': ¥ — Y is a Picard operator if there exists y* € ¥ 'such that
Fr =y* where Fr = {y € Y : T (y) = y} is the fixed point set of T', and the sequence
(T™ (yo))nen converges toy* forally, €Y.

Definition 2.15

[29], [30]

A linear topological space of functions from (—oo0, 0] into R, with seminorm |+|| g. is called an

admissible phase space if # has the following properties:

(H1)
Ify : (—oo,b] — Ris continuous on [0, b] and y, € %, then for every ¢ € [0, b] the following
conditions hold:

(i) v € %;
(i) |y (¢)] < 22| |y; |l g where £ > 0is a constant, and | (0)| < I#||¢|| g forall p € B.

(iil)|y || g < K (2) os<u1<>t [y (8)| + M (¢) |lyo | g Where K, M : [0, +00) — [0, +00) with K
<e<
continuous and M locally bounded, such that K, M are independent of y (. ). Denote
Ky =sup{K (t):t €[0,b]} and My =sup{M (t) : t € [0, b]}.

(H2)
For the function g (. ) in (H1), the function ¢ — y, is continuous from [0, ] into 8.

(H3)
The space % is complete.
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Lemma 2.16

[16]

Let (Y,d, <) be an ordered metric space, and let T : Y — Y be an increasing Picard operator with
Fr={y3} Thenfory € Y,y < T (y) implies y < y, whiley > T (y) implies y > .

Lemma 2.17

6]
Let f: I, x R — R be a continuous function. Then the 4-Hilfer problem

HgoP¥y(t) = f(t,y(t); te L =(0,3],
-9;)1+_7;¢y (0) = 3o,

is equivalent to the integral equation

y(6) = OOy 4 L 2 () (9 () — $ ()7 (5,9 (5)) do 22)

Lemma 2.18

[17], Generalized Gronwall’s Inequality

Let u, v, be two integrable functions and h continuous, with domain [a, b]. Let ¢ € C [a,b] an
increasing function such that ¢/ (t) # 0,Vt € [a, b]. Assume that u and v are nonnegative and h is
nonnegative and nondecreasing. If

u(t) Sv(E)+h @) [, (5) (1) — ¥ (2)*  u(s)ds,

then, for all t € [a, b],we have

u(®) <o)+ [ T2 M () (40 - 9 () * o (o) s 23)

Further, ifv is a nondecreasing function on [a, b] then

u(t) <v(t) Ex ( (1) T () (¥ () — ¥ (a))),

where Eq (+) is the Mittag-Leffler function with one parameter c.

3. Main results

In this section, we investigate the existence, uniqueness, and UHML stability results on the 4-Hilfer
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problem of FFDE (1.2).

3.1. An existence and uniqueness results
Let us begin by introducing the following space:
'na,q,.p = {y :I—R: le"‘ € &, y|1'1 € Gl—mb (I11R)} .

It is easy to verify that .f),'w is a Banach space with respect to the norm

¥la, , =lsolle + sl

To establish our results, we need the following hypotheses:

(F1)
f:Ia x 8 — Ris continuous and there exists constant My > 0 such that

|f(t1u')_f(t’v)|SMf "u_v".ﬂiv tel, w,veAB.

(F2)
The following inequality holds

P(b)—(0))> "
WO 1y g, <1,

where Kj = sup {|K (t)| : t € I, } and K (¢) defined as in (H1).
Definition 3.1
let y=a+pB(l—a)where 0<a<l,and 0<B<1Theny€ 2, , defined by

($(0)-¢(0)"" 3.1
SR G

VO =) +35 o ¥ ) @ @) —$ () f(s,5,)ds, teh,
p(t); ter
is said to be a solution of (1.2) if y satisfies the equation # Qg;ﬂ;'[’y (t) = f(t,4;). t € I, with the
conditions J;:""ﬁ y(0) = yo. ¥ (t) = ¢ (t) fort € I* and y|;, € Ci—yy (I1,R).
Theorem 3.2

Assume that (Fy) and (F2) are satisfied. Then v-Hilfer problem of FFDE (1.2) has a unique solution in

By

Proof

Transform the problem (1.2) into a fixed point problem. Define the operator Tf : 'Qa.w — .f),m,
by
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($()-$(0)"" (3.2)
@)
T () =\ +55 o ¥/ ) @ (&) — ¥ (s)* " f(s,8,)ds, teh,
e (t); tel".
For any function ¢ € 4, we define & : I — R by
_ 0, te I2, (33)
7 _{ o@); tel,

and then & (0) = ¢ (0). For each function z € Ci—yy (I1,R) with z(0) = 0 we denote by
% : I — R the function defined by

£(t) = { @E -$(0) "2(t); tekh,
0, telI.

If y (.) satisfies the integral equation

y(t) = POV, | L [ () (B (1) — () F (s,3,) do,

for te€ I, withy(t) = ¢ (t), fort € I*, then we can analyze y (. ) as follows
y(t) =@ () + z(t);t € L. Itis easy to see that y, = @, + 2, for every t € I, if and only if z
satisfies zg = 0 and

— ()™
z(t) = (¥(®) F'(l"g))) ¢ (0) (34)

£ Y @) W) - ¥ (&) (6,5, + 2) ds,
for ¢€ I, with Zg =0.Set 2, = = {ze 0, ,,20=0}.Forze 12,4 et ||||ﬂ; , be
" » m !
seminorm in ﬂ;m , defined by
lella, , = lalla + el 35)
=sup{ (¥ (&) - $(0)) " l2(®)] :t € B}

Since (.fl;m 5 12l 2, ) is a Banach space for z € £2,, . we define the operator

— 7-1
(T32) (t) = w(t)rzgw)) 2 (0) (3.6)

+ 1 o ¥ () (B (@) — ¥ ()* ' (5,7, + 2,) d,

fort € Iy, and (T}‘z) (t) =0,for te€ I*. Then, we get (T}‘ z)o = 0. Obviously the operator T}
having a unique fixed point is equivalent to T}‘ having one. So, we will show that the operator T}'
has a unique fixed point. Note that for any continuous function f, the operator T}‘ is also
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continuous. Indeed, let us set sup,cy, |f(8,0)| = p < 00, and for all ¢, + € € I, we have

* . €)—9(0))"" - ($(t)—$(0))"*
|Tf (2) (t +¢€) — Tf (2) (t)l =| (¥(t+e)—9(0)) r(‘y)(il’(t) ¥(0)) ¢ (0)

+ 1oy oV () @+ ) — % ()" f (8,5, +2,) ds
— s fo ¥ () @) — 9 ()7 f (5,5, + 2.) ds|

7-1_ -1
S| (¢(t+e)—¢(0))me(t)—«p(o» ¢ (0)

+
iy oV () @ (E+ ) —$(2)* (£ (3,8, +2:) — £(8,0)| + £ (5,0))ds
R AQICIORET0) i

X (|f (8, @, + 25) — £ (8,0)| + | £ (s,0))ds]

<| @+ () —po)™ 90
()

((-/:(tﬁ)—wb(ﬂ))" (¢(*)"/’(°”°) (MbeIIZNnr,,,,., + I‘) |’

I(a+1)
where we used the fact || @, + Z,|| g < Ks|[2||g» due to (H1). Thus we observe that
Br¥

|T}‘ (2) (t+¢€) — TF (2) (t)| =0, e—0.
Next, we show Tf s .(I" definecl by (3.6) is a contraction mapping in .();m s
Let us consider z, 2* € .fl"’ , and foreacht € I, we have
|l ) — O (T72) () - [¥ (1) — ¥ (O 7 (T} 2") (2)

—(0)]" -
< BOROL 3o/ (8) () — ¥ (o)™
|f(3"Pa+z3) f(s,cp,+z*.)|ds

_ -y 11 —_~
< BOSOIT 47, 4 (5) (9 (8) — % ()" 124 — Fall .

From (H1), we obtain
12: — 2%l < K (£) Sup |2 (1) =7 ()| + M (@) 120 — 70l 9 (3.7)
< Ky sup [(r) = (0)]' 7" |2(r) — 2 ()|

0<7<s

=Kl - %lg + 2= 2o, )
= Killz— g, -

It follows that
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1% @) - $ O (T72) (&) - [ (&) - w O] (T72) )|
< MyKillz—2 g, PO [y () (9 (2) — () ds

t)—9(0))> "
= e MiKilla~ 2 g,

which implies

w, ($(b)—(0))> ™+ _ (3.8)
177 2 Tf"'"nf.ﬂ# < " Tety — MsKa|lz z'"n;ﬂ#-

As the hypothesis (F'g), it follows that the operator T; is a contraction mapping. An application of
Banach fixed point theorem shows that T}‘ has a unique fixed point 2 € .f);,’ " Sety = @ + z, then

T} has a unique fixed pointy € .f)_,m, which is the unique solution to the ¢—Hilfer problem (1.2) in
2

B U

3.2. Ulam-Hyers-Mittag-Leffler (UHML) stability

In this section, we discuss the UHML stability of 9p—Hilfer problem (1.2). The following observations
are taken from[15], [16], [25]. Let y (£) = @ (£) + 2 (£) is solution of (1.2) in £2,_ , withy, =
P: + 2 and let 2 () = & (¢) + w (¢) satisfies of the inequality

[FDEY2 (t) - f(t, 2e)| < cBa($(8) — 4 (0)% tel,
where &z = @; + 0.
Definition 3.3

The first equation of (1.2) is UHML stable with respect to Eq, ((% (£) — ¥ (0))*) if there exists
C > 0 such that, for each € > 0 and each solution w € .Q"‘ , 0 the inequality (3.9), there exists a
solution z € ﬂ;w to the problem (1.2) with

|2(8) —w(t)| < Cp eBa (¥ (¢) —(0))%); tel

Remark 3.4

A function w € Cy—y (I1, R) is a solution of the inequality

[F 25w (8) — £ (£, @, + @)| < eBa( (£) — ¥ (0))%; te b, (3.9)
if and only if there exists a function b € C1—yy (I1,R) such that

(i)
Ih ()| < eBa (¥ () -9 (0)%);  tebh;

(ii)
TGePVuw(t) = F(t,8, +B) +h(); tel.
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Lemma 3.5

https://www.sciencedirect.com/science/article/pii/S259003742030025X ...

Lety=a+B(1—a)where0 < a <1and0 < B < LIfw € Ci—yyp (I1,R) satisfies the inequality

(3.9), then w is a solution of the following integral inequality

| w(®) - Ao — 75 Jo ¥ (8) @ () — ¥ (&) £ (¢,8, + T) do|
< B ([ (8) -9 (0)]*).

where

—(0))T
oy = (¢'(t)r'g$))) ¢ (0).

Proof

Indeed by Remark3.4, we have that

Bl (t) = f(t, 5, + W) +h(t); tel.

It follows from Lemma2.11 that

w(t) =2+ 1y fo ¥ (&) B () — ¥ ()£ (4,8, + ) ds
+ 15 Jo ¥ (8) (B (&) — ¥ (8))* R (s) d.

From the last equality, Remark3.4 and Lemma2.10, we get

[ (t) — o — 75 5 ¥ (8) @ () — ¥ (8)* £ (&, @, + @,) |
< 1ty o ¥ @) (b (1) =9 (2))° 7 |k (s)] ds

< 165 o ¥ (8) (W () — $(8)* " Ea ([ () — % (0)]*) ds

< e Ea () — % (0)])

= (B[ @ - v )] -1)

<eEo(0®-+0O)). O

Theorem 3.6

Assume that (Fy) and (Fg) are satisfied. If

sup [(s) ¢ (O " <1, 0<y<L
0<s<b
Then the equation

Bgohby(t)=f(tw); teh,

(3.10)

(3.11)
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is stable in the sense of UHML.

Proof

Lete > 0,and letw € ﬂ;ﬂ, ’ be a function which satisfies the inequality

[ 257w (@) - £t 8 + @)| <cBa (@) -9 (0)]");  teh. (3:12)
We denote by z € .Q;ﬂ v the unique solution to the problem

HPebby(t) = f(t, 7, +2); te b, (3.13)
Iy ™ 2(07) = FTw (01)
z(t)=w(t); tel.
According to Theorem 3.2, we have
w(t); tel,
z(t) = 1 a-1 5
A+ 1y Jo ¥ (8) (@) — 9 (2))* 7 £ (8,8, + 2:) ds, te L.
From the fact &, = 24, (since I;:'Wz (0t) = I;: " (0%) and 2 () = w (£), we obtain

B w(t); tel*,
# _{m+ﬁf:¢f(s) (4O~ #()* (0.7, +2,)ds, te b

Thus, in the light of Lemma3.5, and (F ), we have for eacht € I

|lw (t) — z(t)| (3.14)
<|w(t) - o~ Fy 59 (&) GO~ # ()™ £ (o5, + @) do

+ 7y bV @ @O —¥ () 1f (8,7, +T) — £ (2,8, +2)| ds

< eEq ([ () —9(0)]%)

+ 75 5 ¥ (8) B @) — 9 () |, — 2| gds.

In a similar way of the inequality (3.7), we obtain

1B = 2lg < Ko sup 1 (7) = OF "o (7) = 27 (315)

From (3.14), (3.15) we have

My

[(t) - 2] < eBa (W @) - $ O1) + 7
Jo¥ (8) (¥ () — % () K1 (8) — % ()] 7 |w (8) — 2(3)| ds.

Now, for allu € £2 ., we define the operator Ty : £2, _ — 2, _ by
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Tiu(t)
0; terI”,
MK,

=1 eBa([w®) - O)) + 75y o ¥ () (¥ (&) —$(a)*
[¥(s) ¢ (O)] "u(s)ds, teb.

We prove that T is a Picard operator. For all £ € I and for eachu,u* € C1—yy (I, R), it follows
from (¥ ) that

1% @) — % O [(T1w) () - (Tuw") ()]
< MISWOSOIT 144y () (9 (£) — % ()" [ (8) — $ O)]*7 [ (o)
— u* (s)| ds

< MRBOIOIT 14 (5) (3 () — () = g, ds

MK [(t)—9(0)]* ™
=== I(a+1) "u —ut "01—1,¢ ’

which implies

M; K [(b)—$(0)]" ™
I(a+1)

_ *
"T]_'U, T1u "01_7# <

From (¥'9), the operator T is a contraction mapping on ﬂ;m , Via the norm ""01—w Applying the

Banach fixed point theorem to T, we see that T3 is a Picard operator and Fi; = «*. Then we have
forall tely

u* (t) = Tyu* (t)
= eE, ([v (t) — % (0)]%)

MK,

+ Tr Jo ¥ (8) (B 2) — % (8)* " [# (5) - (0)]*"u* (s) d.

Next, we prove that the solution w* is increasing. Set o = n%t% u* (8) € R*, and for all
8€|0,

0 <t; <t3 <b, wehave
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u* (tz) —u* (t1)
= eBq ([% (t2) — ¥ (0)]*) — eEq ([ (t1) — % (0)]%)
+ Mbeﬁa) I ¥ (8) ( (t2) — % (8))* [ (8) — ¥ ()] " (s) ds

Mbe

+ T IV @)@ () - ¥ () - @) - ¥ ()™
x [ (s) - ¢(o>11-"u* (s)ds

+ Tray S ¥ (8) (9 (82) — ¥ (8))* [ () — $ ()] " (s) ds
> eEo ([ (t2) — % (0)]) — eBe ([ (1) — % (0)]%)

+ (1) —w O - [p () - O e

oM; K,

+ ([ (82) -9 (O)" — [¥ (1) — ¥ (O ) 7oy

> 0.

Therefore, u* is increasing, and by (3.10), we get

M fK],

u* (t) < eBaltp (t) - ¢ (0)" + 7y Jo ¥ (8) (¥ () — ¥ (8))* "u* (s) ds.
Using Lemma2.18, for ¢ € I3 we attain

u* (t) < eBa [y (t) — ¥ (0)]* Ea(M; Ky [9 (t) — % (0)])
< Eo(M; K[ (b) — % (0)]*)eEal¥ (£) — % (0)]°
= Cg,eE, ([¢ () — ¢ (0)]%),

where Cg, = E(M;Ky[v (b) — v (0)]%).

In particular, if u = |w — 2|, then u () < Tju (£) and by applying Lemma2.16, we obtain
u (t) < u* (¢). Therefore, it follows

2@®) -y (Bl =lw@®) - 20)| < Cr.eFa(@®) - ¢ O] );  tel
O

4. An example

Firstly, let p be a positive real constant and we define the functional space 9, by
B, = {y eC(I*,R): ‘l.l;:c_nooe”‘y(s) exist i.n]R} ,

endowed with the following norm ||y||, = sup{e?* |y (s)| : —oo < s < 0}.
Then %, satisfies axioms (H1), (H2) and (H3) with K (t) = M (¢) = 1 and o = 1. (see[31]).

Consider the 9—Hilfer problem of FFDE
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Hg% %2,

AN y() = bl 4 e0,1], (41)

8+et ?
§2 . ot
']0"' y(0) =1,
y(t)=p(t); te(—00,0],
wherea = ;,ﬂ-% y=a+p—af=3(0,b] = (0,1], 9 () = 2¢ for all £ €(0,1], and
fty = ” . Thus, for each y,y* € %, and t € (0, 1], we have

|f(t’ w) - f(t
< sllz—ll,-

| < ghellz -9,

Hence the conditions (F1) holds with My = %. It can be checked that condition (Fg) is satisfied
with My = %,Kb =la= % and ¢ (t) = 2* fort € (0,1] i.e.

%W () -4 (0)]" = SPE%) ~0.14< 1.

Now all the hypotheses in Theorem3.2 are satisfied, so problem (4.1) has a unique solution on
(—o00,1].

Let us consider the following inequality

|H PP (t) - e;%l <eEy (2 - 1)%; t €(—o0,1]

is satisfied. By applying Theorem 3.6, the problem (4.1) is UHML stable with
[£(6) -y (O <CayeBy ((#-1)3);  te(-oo,1)

where

Ce, =E1(3) =e %(1+3f1 -f( (1) -+ é))dz)mz.muze%

5. Conclusion

This paper studies a class of a nonlinear FFDEs with infinite delay involving ¢-Hilfer fractional
derivative. The Picard operator method, Banach fixed point theorem and generalized Gronwall
inequality are quite general and effective in our analysis, it is reasoned some adequate conditions
for existence, uniqueness and UHLM stability of the solution to the considered FFDEs.

As aresult, it is essential to develop the concepts of stability for the proposed problem. The
advantages of the problem considered and the importance of obtained results have been provided
in the introduction section. It is the first work concerning FFDEs with infinite delay involving -

18 of 25 18-06-2024, 14:16



Ulam—-Hyers—Mittag-Leffler stability for a y-Hilfer problem with fractio... https://www.sciencedirect.com/science/article/pii/S259003742030025X ...

Hilfer fractional derivative. We trust the reported results here will have a positive impact on the
development of further applications in engineering and applied sciences.
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