

Previous

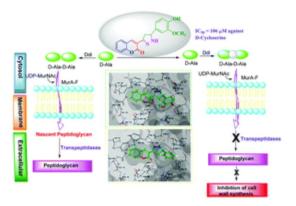
Next

Log in / register

Issue 23, 2019

From the journal: New Journal of Chemistry

A new efficient domino approach for the synthesis of coumarin-pyrazolines as antimicrobial agents targeting bacterial D-alanine-D-alanine ligase †


Check for updates

Asha V. Chate, n * Ankita A. Redlawar, Giribala M. Bondle, Aniket P. Sarkate, Shailee V. Tiwari C and Deepak K. Lokwani d

Author affiliations

Abstract

The inhibition of D-alanine-D-alanine ligase (Ddl) prevents bacterial growth, which makes this enzyme an attractive and viable target in the urgent search for novel effective antimicrobial drugs. In this work, a series of novel coumarin-linked pyrazoline inhibitors of D-alanine-D-alanine ligase were synthesized and evaluated as inhibitors of *Escherichia coli* DdlB ligase in order to target resistant strains of bacteria using environmentally benevolent β -cyclodextrin as a supramolecular catalyst *via* one-pot four component synthesis in water as a green reaction media. All the newly synthesized compounds have been characterized by elemental analysis and various spectroscopic methods. The new procedure has noteworthy advantages including easy work-up, short reaction times, high yields of products and column-free synthesis. The synthesized compounds were evaluated *in vitro* for their antimicrobial activity. Among the synthesized compounds, namely 3-(5-(4-hydroxy-3-methoxyphenyl)-4,5dihydro-1*H*-pyrazol-3-yl)-2*H*-chromen-2-one (**5f**) was found to be the most potent D-alanine-D-alanine ligase enzyme inhibitor, with an IC₅₀ value 106 μ M, and the compound 3-(5-(*p*-tolyl)-4,5-dihydro-1*H*- pyrazol-3-yl)-2*H*-chromen-2-one (**5g**) was found to be the second-most potent inhibitor of the DdlB enzyme, with an IC₅₀ value 111 μ M against the standard D-cycloserine. In addition, SAR study provided evidence that the –OH, –CH₃ and –OCH₃ groups at the 4- and 3-position of the coumarins linked to the pyrazolines scaffold increased enzymatic inhibition, while the molecular docking study of most active compounds **5a**, **5g**, and **5j** against DdlB enzyme of *E. coli* exhibited good binding properties. This work thus highlights the coumarin-linked pyrazoline motif as a very promising tool for the development of novel antimicrobial compounds acting through an interesting bactericidal mechanism of action.

Buy this article £42.50*

* Exclusive of taxes

This article contains 10 page(s)

Other ways to access this content

Log in

Using your institution credentials

Sign in

With your membership or subscriber account

Supplementary files

Supplementary information

PDF (1474K)

Article information

https://doi.org/10.1039/C9NJ00703B

Article type

Paper

Submitted

09 Feb 2019

Accepted

06 May 2019

First published

06 May 2019

Citation

New J. Chem., 2019, 43, 9002-9011

BibTex

✓ Go

Permissions

Request permissions

Social activity

Tweet

Share

Search articles by author

🗌 Asha V. Chate

🗌 Ankita A. Redlawar
🗌 Giribala M. Bondle
🗌 Aniket P. Sarkate
🗌 Shailee V. Tiwari
🗌 Deepak K. Lokwani
Go

Spotlight

Advertisements

Journals, books & databases

Home
About us
Membership & professional community
Campaigning & outreach
Journals, books & databases
Teaching & learning
News & events
Locations & contacts
Careers
Awards & funding
Advertise
Help & legal
Privacy policy
Terms & conditions

© Royal Society of Chemistry 2024 Registered charity number: 207890