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Abstract

This paper develops a non-linear state feedback control for a non-linear system affected by
parametric uncertainty and external disturbance. The parametric uncertainty and external
disturbance are estimated as a lumped disturbance using a finite time disturbance observer.
By designing the non-linear state feedback control based on a finite time disturbance
observer, the proposed method counters the effect of lumped disturbance and ensures the
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system states’ finite-time convergence. The performance of the proposed scheme is compared
with a sliding mode controller using a third-order non-linear uncertain system example. The

proposed scheme is implemented on a hardware setup of a 2-DOF Helicopter system.

Use our pre-submission checklist - -

Avoid common mistakes on your manuscript.

1Introduction

Many modern systems require accurate tracking of reference commands, continuous control
action in order to provide high quality and reliable performance, i.e., robotic manipulator [1],
PMSM drive [2], servo system [3, 4] to name just a few. The performance of these systems is
getting affected by an unknown external disturbance and parametric uncertainty. The
system’s parametric uncertainty significantly affects the transient response of a system, and
an unknown external disturbance may destabilize the system or causes a steady-state error in
the system response. Many techniques have been proposed to control a system affected by an
unknown disturbance and parametric uncertainty i.e. Adaptive control [5], Sliding mode
control [6, 7], Composite non-linear feedback control, Disturbance observer-based control 8]
to mention just a few.

An adaptive control updates the controller parameters based on the system states to stabilize
the system and cope with uncertainty and external disturbance. The adaptive law based
control has been applied to several practical systems [9, 10]. An unbounded adaptation of the
controller parameters may destabilize the system, which is an undesirable effect.

The Sliding mode control (SMC) has gained popularity in the control community due to its
robustness against external disturbance and parameter variations. It utilizes a discontinuous
control component to mitigate the effect of external disturbance. Many applications have been
implemented using Sliding mode control [11,12,13]. The discontinuous control of traditional
SMC causes chatter in the system states and may induce wear and tear of the actuator [14].
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The composite non-linear feedback control (CNF) consists of linear feedback law and non-
linear feedback law. The linear part is designed with a small damping ratio for a speedy
response with bounded control input consideration. The non-linear feedback control law
adapts the damping of the system based on the tracking error to reduce the overshoot of the
system [15]. The application of CNF reported in the literature is limited to a linear system with

input saturation [16].

The controllers mentioned above either utilizing a discontinuous control action or large
amount of control effort to compensate the effect of parametric uncertainty and an unknown
external disturbance. A disturbance observer is an attractive technique to estimate the effect of
disturbance without using any additional sensor. Once the disturbance is estimated accurately,
it can be compensated in the control action [17]. Disturbance observer-based control has been
combined with many control technique [8, 18] to control uncertain systems. In this paper, a
finite time disturbance observer (FTDO) [19] is utilized to estimate the lumped disturbance,

and it is compensated in a non-linear state feedback control (NLSFC) law.

It is well known that the linear state feedback control is not robust to parametric uncertainty
and external disturbances. Further, such controller design requires the exact knowledge of
system parameters, which is hardly available in most of the practical systems and ensures
asymptotic convergence of the system states. In this paper, an FTDO based NLSFC is designed
to provide finite-time convergence of disturbance estimation error. The system states to zero

in the presence of parametric uncertainty and external disturbance.

The rest of the paper is organized as follows. The problem formulation is stated for the NLSFC
in Sect. 2. The non-linear state feedback control for a second-order nominal system and the
uncertain system is described in Sect. 3. The FTDO is derived in Sect. 4 and the generalization
of the proposed scheme to \(n-\)th order system is given in Sect. 5. The simulation results of
the proposed scheme are shown in Sect. 6 followed by the experimental validation in Sect. 7.

The paper is concluded in Sect. 8.

2 Problem formulation

3of27 18-06-2024, 11:59



Non-linear state feedback control for uncertain systems using a finite ti... https://link.springer.com/article/10.1007/s40435-021-00817-0

Consider a second order system with following dynamics

SS\begin{aligned} {\dot{x}} 1&=x 2 \nonumber \\ {\dot{x}} 2&=-a 1x 1-a 2x 2+bu
\end{aligned}ss

(1)

where \(x_1\) and \(x_2\) are the system states, u is the control input, \(a_1,a_2\) and b are
the system parameters. The control objective is bring the system states from their initial

conditions to origin.

The Linear state feedback control (LSFC) law can be implemented as

SS\begin{aligned} u = -k_1x_1-k 2x 2 \end{aligned}SS
(2)

where, \(k_1\) and \(k_2\) are the state feedback gains to be designed. The state feedback
gains can be selected such that the closed system is stable and control objective is achieved.

The closed loop dynamics is given by

SS\begin{aligned} {\dot{x}} 1&=x 2 \nonumber \\ {\dot{x}} 2&=-(a_1+k 1)x 1-
(a_2+k 2)x_2 \end{aligned}Ss

(3)

or

SS\begin{aligned} \ddot{x} 1+ (a_2 + k 2) {\dot{x}} 1+ (a_1+k_1)x 1=0 \end{aligned}SS
(4)

The LSFC law (2) ensures asymptotic convergence of states of the system (1) and the design of
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control law requires exact knowledge of system parameters. These limitations are overcome

by designing a non-linear state feedback control in the next Section.

3 Non-linear state feedback control law

In this section, first, a Non-linear State Feedback Control is designed for the nominal second-
order system (1), and later, it is extended to the system affected by the parametric uncertainty

and an unknown external disturbance.

3.1For nominal system
The proposed NLSFC for the system (1) is given by

SS\begin{aligned} u = \frac{1}{b} \Big [ -k_1 \left| x_1 \right| A{\beta _1} \text {sgn}(x_1) -
k_2&\left| x_2 \right| Af{\beta _2} \text {sgn}(x_2) \nonumber \\&+a_1x_1+a_2x 2\Big]
\end{aligned}SS

(5)

where, \(k_1\) and \(k_2\) are the control gains to be designed, the coefficients \(\beta _1\)
and \(\beta _2\) are selected as follow [20]:

SS\begin{aligned} \beta _1&= \beta ,\,\,\, n = 1 \nonumber \\ \beta _{i-1}&= \frac{\beta _i
\beta {i+1}}{2\beta {i+1}-\beta i}, \,\,i=2, 3, 4,.., n \end{aligned}$$

(6)

where \(\beta _{n+1} =1\), \(\beta _n = \beta \), \(\beta \in (1-\alpha, \,\, 1)\) and \(\alpha
\in (0,\,\,1).\) The function \(\text {sgn}(\cdot )\) is the signum function of any variable. The
control gains (\(k_1\) and \(k_2\)) are selected such that the all eigenvalues of polynomial
\(sA2 + k_1s+k_2)) are in left half side of the complex plane. The closed loop dynamics of

system (1) with the proposed control law (5) becomes
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SS\begin{aligned} {\dot{x}} 1&=x 2 \nonumber \\ {\dot{x}} 2&= -k 1\left| x 1\right|
AM\beta 1} \text {sgn}(x 1) - k 2 \left| x 2 \right| A{\beta 2} \text {sgn}(x_2)
\end{aligned}ss

(7)

If the coefficients \(\beta _1\) and \(\beta _2\) are selected as per (6) and the control gains are
selected such that the polynomial \(sA2 + k_1s + k_2\) then the system states converges to
origin from their initial condition in finite time (\(t \ge t_c\)) [20].

Remark1

When the coefficients are selected as \(\beta _1 = 1\) and \(\beta _2 = 1\), the control law
becomes Linear State Feedback Control

SS\begin{aligned} u = \frac{1}{b} \Big [ (a_1-k_1) x_1+ (a_2 - k_2) x_2 \Big ] \end{aligned}S
S

(8)

and the system dynamics turns out as

SS\begin{aligned} \ddot{x} 1+ k_2 {\dot{x}} 1+k 1x 1=0 \end{aligned}SsS

(9)

The NLSFC ensures finite time convergence of the system states but it still requires exact
knowledge of the system parameters (\(a_1\), \(a_2\) and b). This requirement limits the
application of the proposed control law to practical systems. In practical systems, the exact
value of system parameter may not be known but the partial information may be available i.e.
nominal value of parameter is known or the range of parameter variation is known or the
upper bounds of parameter is known. Further, the external disturbance acting on the plant
may not be measurable or it is expansive to measure the signal. In such situations, the
proposed scheme can be implemented as follows.
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3.2 In the presence of uncertainty and disturbance

The dynamics of second order uncertain system is given by

SS\begin{aligned} {\dot{x}} 1&=x_2 \nonumber \\ {\dot{x}} 2&=-a_{In}x 1-a_{2n}x_ 2
+b_nu + d({\varvec{x}},t) \end{aligned}S$

(10)

where \(a_{1n}\), \(a_{2n}\) and \(b_n\) represent the nominal value of the parameters
\(a_1\), \(a_2\) and b respectively, \(d({\varvec{x}},t)\) represents the lumped disturbance
acting on the system \(d({\varvec{x}},t) = \Deltaa_1x_1+\Deltaa 2 x_2 + \Deltabu + \zeta
(H\), where \({\varvec{x}} = \begin{bmatrix} x_1,&x_2 \end{bmatrix}AT\) and \(\zeta (t)\)

is an unknown external disturbance acting on the system.

Assumption 1

The lumped disturbance \(d({\varvec{x}},t)\) is continuous time unknown function and it is

second order differentiable which satisfies following condition

SS\begin{aligned} | \ddot{d}({\varvec{x}},t) | \le L \end{aligned}S$

(1)

where L is Lipschitz constant.

For many practical systems, this assumption is realistic. For example, PMSM motor [21], DC—
DC converters [22], attitude tracking of rigid aircraft [23], robotic manipulator [24], the load
disturbance and the rate of change of load disturbance may change, but the second derivative

of disturbance is always bounded.

The control objective is to design a control law for the system (10) such that the system states

reach to origin in finite from their initial condition. The proposed control law is now given by

SS\begin{aligned} u = \frac{1}{b_n} \Big [ -k_1\left| x_1\right| A{\beta 1} \text {sgn}
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(x_1)&-k 2 \left| x 2 \right| A{\beta 2} \text {sgn}(x_2)\nonumber \\&+a {In}x 1+
a_{2n}x 2\Big ] - {\hat{d}} \end{aligned}S$

(12)

where \({\hat{d}}\) is an estimate of lumped disturbance \(d({\varvec{x}},t)\). The dynamics
of closed loop system becomes

SS\begin{aligned} {\dot{x}} 1&=x 2 \nonumber \\ {\dot{x}} 2&= -k _1\left| x 1 \right|
AM\beta 1} \text {sgn}(x_1) - k 2 \left| x 2 \right| A{\beta 2} \text {sgn}(x_2) + {\tilde{d}}
\end{aligned}SsSs

(13)

where, \({\tilde{d}} = d({\varvec{x}},t) - {\hat{d}}\) represents the estimation error of
lumped disturbance \(d({\varvec{x}},t)\).

Remark 2

It is worth noting that the closed loop dynamics (13) is driven by the disturbance estimation
error \({\tilde{d}}\). If it is possible to estimate the lumped disturbance exactly then
\({\hat{d}} = d({\varvec{x}},t)\) and \({\tilde{d}} = 0\). The system behaves like nominal

system with finite time reach-ability of system states.

3.3 Stability

The stability of closed loop system is derived in the lines of [20] by considering the Lyapunov

function as

SS\begin{aligned} V(x_1, x 2) = \frac{1}{2} x 2A2 + \frac{k_1}{\beta 1+1} [x_1 [A{\beta
_1+1} \end{aligned}SS

(14)

The time derivative of \(V(x_1, x_2)\) can be computed as
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SS\begin{aligned} {\dot{V}} =x 2 {\dot{x}} 2 +k 1x 2 |x 1[A{\beta 1} \text {sgn}(x_ 1)
\end{aligned}ss

(15)

Simplifying (15) using (13) and (10) as

SS\begin{aligned} {\dot{V}} = -x_2 |A{\beta 2 +1} + x_2 {\tilde{d}} \end{aligned}SS$

(16)

Assuming that the disturbance estimation error \({\tilde{d}}\) goes to zero in a finite time.

Thus after a finite time, the time derivative of Lyapunov function is given by,

SS\begin{aligned} {\dot{V}} = -1x_2 |A{\beta 2 +1} \le O \end{aligned}S$

(17)

which ensures finite-time convergence of system states (i.e., \(x_1\) and \(x_2\)) to zero.

4 Disturbance estimation

It is possible to use any finite time disturbance estimation technique in combination of the
proposed scheme. In this paper, we have utilized finite time disturbance observer proposed in
[19] to estimate lumped disturbance \(d({\varvec{x}},t)\). The dynamics of finite time

disturbance observer is given by

SS\begin{aligned} \dot{{\hat{x}}} 2&=-a {In}x 1-a_{2n}x 2 +b_nu +v_0 \nonumber \\
\dot{{\hat{d}}}&=v_1\nonumber \\ \dot{\hat{{\dot{d}}}}&= -\lambda 2\,\, L\,\, \text
{sgn}(\hat{{\dot{d}}} - v_1) \end{aligned}S$

(18)
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where, \({\hat{x}} 2\) is the estimate of state \(x_2\), \({\hat{d}}\) is the estimate of lumped
disturbance \(d({\varvec{x}},t)\) and \(\hat{{\dot{d}}}\) is the rate of change of lumped
disturbance estimation. The variables \(v_0\) and \(v_1\) are updated as

SS\begin{aligned} v_0&= -\lambda _0 LA{\frac{1}{33}} | {\hat{x}} 2 - x 2[A{\frac{2}{3}}
\text {sgn}({\hat{x}} 2 - x 2) + {\hat{d}} \nonumber \\ v_1&= -\lambda _1 LA{\frac{1}{2}}
| {\hat{d}} - v_O[A{\frac{1}{2}} \text {sgn}({\hat{d}} - v_0) + \hat{{\dot{d}}}
\end{aligned}ss

(19)

where, L is a observer gain and \(\lambda _0, \lambda _1\) and \(\lambda _2\) are coefficients
to be selected by the designer.

Defining the error estimation errors of observer as

SS\begin{aligned} {\tilde{x}} 2&= {\hat{x}} 2 - x_2 \nonumber \\ {\tilde{d}}&= {\hat{d}}
- d({\varvec{x}},t) \nonumber \\ \tilde{{\dot{d}}}&= \hat{{\dot{d}}} - {\dot{d}}
\end{aligned}SsSs

(20)

Taking time derivative of (20) to obtain the error dynamics of FTDO

SS\begin{aligned} \dot{{\tilde{x}}} 2&= -\lambda _0 LA{\frac{1}{33}} | {\tilde{x}} 2|
AM\frac{2}{3}} \text {sgn}({\tilde{x}} 2 ) + {\tilde{d}} \nonumber \\ \dot{{\tilde{d}}}&= -
\lambda _1LA{\frac{1}{2}} | {\tilde{d}} - \dot{{\tilde{x3}3}} 2|A{\frac{1}{2}} \text {sgn}
({\tilde{d}} - \dot{{\tilde{x3}}} 2) + \tilde{{\dot{d}}} \nonumber \\ \dot{\tilde{{\dot{d}}}}
&\in -\lambda _2\,\, L\,\, \text {sgn}(\dot{{\tilde{d}}} - \dot{\tilde{{\dot{d}}}}) +
\begin{bmatrix} -L,\,\, L \end{bmatrix} \end{aligned}S$

(21)

Remark 3
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As per Assumption 1, the second derivative of lumped disturbance is bounded. If the observer
gain L is selected as \(|\ddot{d}({\varvec{x}},t)| \le L\) [19] then the estimation errors go to
zero in finite time. Thus, the estimation errors (\({\tilde{x3}} 2\), \({\tilde{d}}\) and
\(\dot{{\tilde{d}}}\)) go to zero, one can write \(x_2 = {\hat{x}} 2\), \(d = {\hat{d}}\) and
\({\dot{d}} =\hat{{\dot{d}}}\) after finite time (\(t \ge t_o\)).

Remark 4

The observer gains should be selected in such a way that the finite time of observer is less than
the controller time \(t_o \le t_c\). Thus, when the system states reach to origin, the
performance will not get affected by the lumped disturbance or the disturbance estimation

€rror.

When the disturbance estimation error is not zero (\({\tilde{d}}\ne 0\) or \(t < t_o\)), the

closed loop dynamics is governed by

SS\begin{aligned} \ddot{x} 1+ k_2 \left| {\dot{x}}_1\right| A{\beta 2} \text {sgn}
({\dot{x3}_1) + k_1\left| x_1\right| A{\beta _1} \text {sgn}(x_1) = {\tilde{d}} \end{aligned}$
S

(22)

After \(t \get_o\),

SS\begin{aligned} \ddot{x}_1 + k_2 \left| {\dot{x}}_1\right| A{\beta 2} \text {sgn}
({\dot{x}3} 1) + k_1\left| x_1\right| A{\beta _1} \text {sgn}(x_1) = 0 \end{aligned}S$

(23)

5 Generalization to \(n-\)th order non-linear system

The proposed scheme can be extended to \(n-\)th order system as follows. A \(n-\)th order

non-linear uncertain system is given by
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SS\begin{aligned} {\dot{x}} 1&=x 2 \nonumber \\ {\dot{x}} 2&=x 3 \nonumber \\&\vdots
\nonumber \\ {\dot{x}} _{n-1}&=x_n \nonumber \\ {\dot{x}} n&=a_n({\varvec{x}},t) + b_n
\Big (u + d({\varvec{x}},t)\Big ) \end{aligned}S$

(24)

where, \(a_n({\varvec{x}1},t)\) is a known non-linear function and the lumped disturbance is
given by \(d({\varvec{x}},t) = \Delta a({\varvec{x}},t) + \zeta (t)\). The proposed control law
is implemented as follows

SS\begin{aligned} u = \frac{1}{b_n} \Big [ a({\varvec{x}},t) - \sum _{i=13A{n}k i\left| x_i
\right| A{\beta i} \text {sgn}(x_i)\Big ] - {\hat{d}} \end{aligned3}S$

(25)

The estimate of lumped disturbance \({\hat{d}}\) is given by

SS\begin{aligned} \dot{{\hat{x}}} n&= -a({\varvec{x}},t) + b_nu +v_0 \nonumber \\
\dot{{\hat{d}}}&=v_1 \nonumber \\ \dot{\hat{{\dot{d}}}}&= -\lambda _2\,\, L\,\, \text
{sgn}(\hat{{\dot{d}}} - v_1) \end{aligned}S$

(26)

The variables \(v_0\) and \(v_1\) are updated as

SS\begin{aligned} v_0&= -\lambda _0 LA{\frac{1}{3}} | {\hat{x}} n - x n|A{\frac{23}{3}}
\text {sgn}({\hat{x}} n - x_n) + {\hat{d}} \nonumber \\ v_1&= -\lambda _1 LA{\frac{1}{2}}
| {\hat{d}} - v_O[A{\frac{1}{2}} \text {sgn}({\hat{d}} - v_0) + \hat{{\dot{d}}}
\end{aligned}sS

(27)

Remark 5

The proposed scheme indeed utilizes discontinuous components in the higher derivatives of
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the control action. The proposed scheme employs a finite time disturbance observer to
estimate an unknown disturbance and parametric uncertainty accurately, which avoids
excessive control input compared to the traditional discontinuous controller (i.e., Sliding Mode
Controller). Thus, it avoids high power control action to mitigate the effect of lumped
disturbance.

The closed loop dynamics is governed in case of \(t < t_o\) by

SS\begin{aligned} {x} 1A{(n)} + \sum _{i=13}A{n} k_i\left| {x} 1A{(i-1)} \right| A{\beta i}
\text {sgn}({x} 1A {(i-1)}) = {\tilde{d}} \end{aligned}SS

(28)

After \(t\get_o\),

SS\begin{aligned} {x} 1A{(n)} + \sum _{i=13A{n} k i \left| {x} 1A{(i-1)} \right| A{\beta _i}
\text {sgn}({x}_1A{(i-1)}) = 0 \end{aligned}SS

(29)

6 Simulation results

Fig.1

(a) .6
! 4 ]
=
32 *
5 0 )
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0 5 10 15 20
Time (s)
Comparative simulation results with the proposed scheme (dashed) and the SMC (solid): a \(x_1\) and

\(x_{1.d}\) (dotted), b \(x_2\) and \(x_{2_d3}\) (dotted), c \(x_3\) and \(x_{3_d}\) (dotted),du, ed
(dotted) and \({\hat{d}?\) (solid)

To verify the proposed scheme’s effectiveness, it is applied to a third-order nonlinear system
subjected to an external disturbance and parametric uncertainty. The proposed scheme’s
performance is compared with a sliding mode control reported in [25]. The dynamics of a
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third-order nonlinear uncertain system is given by [25],

SS\begin{aligned} {\dot{x}} 1&=x 2 \nonumber \\ {\dot{x}} 2&=x 3 \nonumber \\
{\dot{x}} 3&=Db\Big (u + d({\varvec{x}},t) \Big ) \end{aligned}SS

(30)

where \(d({\varvec{x}},t) = 0.39 \sin (x_1x 2 +x 3 \sqrt{t}) + 0.6 \sin (10t)\) consists of
parametric uncertainty and the external disturbance acting on the plant and \(b = 1\). The
initial condition of plant is considered as \(x(0) = \begin{bmatrix} 6, \,\, 0,\,\, -1
\end{bmatrix}AT\) and the reference trajectories are selected as \(\begin{bmatrix} x_{1 d},\,
\, x_{2_d},\,\, x_{3_d} \end{bmatrix} \) \(= \begin{bmatrix} -\sin (t-1.57), \,\, -\cos
(t-1.57),\,\, \sin (t-1.57) \end{bmatrix}\). The proposed control law is implemented as

SS\begin{aligned} u =&-k_1\left| x_1-x_{1_d} \right| A{\beta 1} \text {sgn}(x 1-x {1 d})
\nonumber \\&- k_2 \left| x 2-x {2 _d} \right| A{\beta 2} \text {sgn}(x 2-x {2 d})
\nonumber \\&- k_3 \left| x 3-x {3_d} \right| A{\beta 3} \text {sgn}(x 3-x {3.d}) +
{\dot{x}} {3 d} - {\hat{d}} \end{aligned3}S$

(31)

Table 1 Nominal parameters of hardware setup [26]

where the control parameters are selectedas \(k_1=5,k 2 =9,k 3 =5)\),\(\beta 1= \frac{5}
{11}, \beta _2 = \frac{5}{15}\) and \(\beta _3 = \frac{53}{19}\) The finite time disturbance

observer is implemented as
SS\begin{aligned} \dot{{\hat{x}3}} 3&=u+v_0 \nonumber \\ \dot{{\hat{d}}}&=v 1

\nonumber \\ \dot{\hat{{\dot{d}}}}&= -\lambda _2\cdot L\,\, \text {sgn}(\hat{{\dot{d}}} -
v_1) \end{aligned}Ss
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(32)

The variables \(v_0\) and \(v_1\) are updated as

SS\begin{aligned} v_0&= -\lambda _0 \cdot LA{\frac{1}{33}} | {\hat{x}} 3 - x 3[A{\frac{2}
{31} \text {sgn}({\hat{x}} 3 - x_3) + {\hat{d}} \nonumber \\ v_1&= -\lambda _1\cdot
LA{\frac{1}{23} | {\hat{d}} - v_O|A{\frac{1}{2}} \text {sgn}({\hat{d}} - v_0) +
\hat{{\dot{d}}} \end{aligned}S$

(33)

where the observer parameters are selected as \(\lambda 0 =3, \lambda 1=2.5,\lambda 2
=2,\)and \( L =1500.\) The sliding mode controller reported in [25] is implemented as

follows. The sliding surface (s) is selected as

SS\begin{aligned}s=c 1 (x 1-x {1.d}) +c 2 (x 2-x {2 d}) +x 3-x {3_d} +&A + Bt;
\nonumber \\&t \le t_f \nonumber \\s=c_1(x 1-x {1.d})+c 2 (x 2-x {2.d}) +x 3-
x_{3.d})\,\,&\text {otherwise}. \end{aligned}S$

(34)

where the value of coefficients is selected as \(c_1=0.31,\) \(c_ 2=112,\,)\,A=-1.57\,\,B=1)\,
\, t_f=1.6\) s. The control law is implemented as

SS\begin{aligned} u = -c_2(x_3-x_{3.d}) - c_ 1(x_2-x {2_d}) + {\dot{x}} {3.d}-B-
\gamma \text {sgn} (s) \end{aligned}Ss$

(35)

where the switching gain is selected as \(\gamma = 1.1\). The comparative plots of the
proposed scheme and the SMC are shown in Fig. 1. It can be observed that the tracking error
\(x_1-x_{1_d}\) goes to zero around \(t = 9\) s with the proposed scheme and \(t = 11\) s with
the SMC as shown in Fig. 1a. It is worth noting that the SMC brings the sliding surface to zero
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in finite time, which leads the system dynamics to

SS\begin{aligned} \ddot{x} 1 - \ddot{x} {1d} + c 2 ({\dot{x}} 1 - {\dot{x3}} {1d}) + c_1({x}
1-{x} {1d}) = 0 \end{aligned}$$

(36)

Thus, the tracking error \(x_1 - x_{1d}\) goes to zero asymptotically with the SMC. In the case
of the proposed scheme, the tracking error goes to zero in a finite time. The comparative plot
of the control inputs is shown in Fig. 1d. The control input with the SMC is discontinuous as it
utilizes switching term and the control input with the proposed scheme is continuous and free
from chattering as it uses FTDO to estimate the lumped disturbance. Further, in case of SMC
the magnitude of discontinuous control is depend on the selection of switching gain
\(\gamma \), which need to be selected as \(\gamma > \left| d({\varvec{x}},t) \right| _{\text
{max3}\). If \(\left| d({\varvec{x}},t) \right| _{\text {max}}\) is not known to the designer,
requires larger value of \(\gamma \) and it may cause higher discontinuous control effort. On
the other hand, the proposed scheme utilizes FTDO to estimate the exact value of
\(d({\varvec{x}},t)\) as shown in Fig. le, which generates smooth control action.

7 Experimental validation

In order to demonstrate the effectiveness of the proposed scheme, it has been applied to a
nonlinear plant of a 2-DOF Helicopter system [26].

7.1 Hardware setup

The experimental setup consists of a 2-DOF Helicopter plant with a VOLTPAQ-X2 power
amplifier, Q2 DAQ board, Emergency stop switch, Logitech joystick, and personal computer
installed with QuaRc and MATLAB tools. The VOLTPAQ-X2 amplifies the controller commands
and supply to the plant. The Q2 DAQ board receives plant feedback signals and the control
commands from the QuaRc software and sends the control commands to the VOLTPAQ-X2
amplifier. The reference signals are either generated by a Simulink block or Logitech joystick.
The emergency stop switch disables all operations in case of any emergency. The QuaRc tool

17 of 27 18-06-2024, 11:59



Non-linear state feedback control for uncertain systems using a finite ti... https://link.springer.com/article/10.1007/s40435-021-00817-0

provides an interface between Simulink and Q2 DAQ board. The hardware setup consists of
two brush-less motors to control the pitch angle (\(\theta \)) and the yaw angle (\(\psi \)).
The pitch and yaw angles are measured using 10 bits optical encoders, which send feedback
signals to the Q2 DAQ board (Fig. 2).

Fig.2

2-DOF helicopter
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Hardware setup of 2-DOF Helicopter system
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Experimental results: a pitch angle \(\theta \) (solid) and \(\theta _r\) (dashed), b yaw angle \(\psi \)
(solid) and \(\psi _r\) (dashed), c control inputs \(u_y\) (solid) and \(u_p\) (dashed), d disturbance
estimation \({\hat{d}}_y\) (solid) and \({\hat{d}}_p\) (dashed)

7.2 Plant dynamics

The dynamics of the nonlinear 2-DOF helicopter system is considered as [26],

SS\begin{aligned} \ddot{\theta }&= - \frac{B_\theta {\dot{\theta }} + m 1A2{\dot{\psi }}A2
\sin \theta \cos \theta + mgl\cos \theta }{J_\theta + m 1A2} \nonumber \\&\quad +

\frac{k {\theta \theta }}{J \theta + m1A2} u \theta + \frac{k {\theta \psi }}{J \theta + m
1A2} u_\psi \end{aligned}S$

(37)

SS\begin{aligned} \ddot{\psi }&= \frac{2m 1A2 {\dot{\psi }} {\dot{\theta }} \sin \theta \cos
\theta }HJ \psi + mIA2 \cos A2\theta } - \frac{B_\psi {\dot{\psi }}}H]J \psi + mlA2 \cos
A2\theta } \nonumber \\&\quad + \frac{k {\psi \theta }}{J_\psi + mIA2 \cos A2\theta }
u_\theta + \frac{k {\psi \psi }}{J_\psi + mlA2 \cos A2\theta } u_\psi \end{aligned}Ss$

(38)

where \(u_\theta \) and \(u_\psi \) are the control inputs to be designed. The objective is to
design the control inputs to bring the difference between actual angles, rate of change of
actual angles and the reference trajectories \(e_{1\theta } = \theta - \theta _r\), \(e_{2\theta }
= {\dot{\theta }} - {\dot{\theta }} r\), \(e_{1\psi } = \psi - \psi _r\)and \(e {2\psi } =
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{\dot{\psi }} - {\dot{\psi }} r\) to zero respectively in the presence of parametric uncertainty,
unknown non-linearity and a coupling between two inputs. The nominal parameters

considered for the experimental validation are given in Table 1.

7.3 Control law

The control inputs \(u_\theta \) and \(u_\psi \) are designed by considering two independent
sub-systems of pitch and yaw dynamics. The coupling between two sub-systems, the
parametric uncertainty and the non-linearity, is considered the lumped disturbances

(\(d_\theta \) and \(d_\psi \)) acting on the sub-systems. The control inputs are selected as

SS\begin{aligned} u_\theta&= \frac{1}{b_{n\theta }} \Big [ a_\theta (\theta, t) - \sum _{i=1}
N 23k {i\theta } \left| e_{i\theta } \right| A{\beta _{i\theta }} \text {sgn}(e_{i\theta })\Big ]
- {\hat{d}}_\theta \end{aligned}S$

(39)

SS\begin{aligned} u_\psi&= \frac{1}{b_{n\psi }} \Big [ a_\psi (\psi ,t) - \sum _{i=1}A{2}
k_{i\psi } \left| e_{i\psi } \right| A{\beta _{i\psi }} \text {sgn}(e_{i\psi })\Big ] - {\hat{d}}
_\psi \end{aligned}SS

(40)

where the lumped disturbances \({\hat{d}}_\theta \) and \({\hat{d}}_\psi\) are implemented
as per (26) and (27). The control and observer parameters selected for experimental validation
are given in Table 2. The known functions \(a_\theta (\theta ,t) = -3.50\,\theta \) and \(a_\psi

(\psi,t) = -9.28\,\psi \).

Table 2 The control parameters and observer parameters used for experimental validation

7.4 Results
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Figure 3 shows the experimental results of the proposed scheme. The tracking of pitch and
yaw reference signals are shown in Fig. 3a and b, respectively. One can observe the pitch and
yaw angles track the reference signals very well. Thus the proposed scheme brings the
tracking errors to zero from their initial conditions. The control inputs are getting adjusted as
the reference signals change, as shown in Fig. 3c. The plot of lumped disturbance estimation is
shown in Fig. 3d. One can see that the proposed scheme accurately estimates the system
nonlinearity, uncertainty, and the coupling between two sub-systems as the lumped
disturbances. Thus the proposed scheme was successfully implemented for a non-linear
uncertain system.

8 Conclusion

In this paper, a finite time disturbance observer-based non-linear state feedback control law is
proposed for an uncertain system. The results are generalized to \(n-\)th order non-linear
uncertain system. The proposed observer-controller combination ensures finite time
convergence of the disturbance estimation error and the tracking errors of system states to
zero in the presence of system non-linearity, parametric uncertainty, and an unknown
external disturbance. The proposed scheme’s performance is compared with a well-known
sliding mode controller, and it shows better performance in terms of smoothness of the
control action and the tracking of the reference trajectory. Further, the proposed scheme is

implemented on a hardware setup of a 2-DOF Helicopter system in a laboratory.
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