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Abstract

In this paper, a super twisting observer-based full order sliding mode control is proposed for a
non-linear uncertain system. The super twisting observer estimates an \(n{-1\)th system
state and the derivative of the \(n{-}\)th system state. It ensures finite convergence of
estimation error to zero. The proposed method retains attractive features of full order sliding
mode control like finite-time convergence of system states, continuous control, and the
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system’s full order dynamics when the system is in the sliding mode. The scheme is validated
on a 2-DOF helicopter system laboratory setup, and the performance is compared with two
well-known observers, i.e., a non-linear extended state observer and a sliding mode observer-

based control using two-link manipulator example.

Use our pre-submission checklist 5 =

Avoid common mistakes on your manuscript.

1Introduction

Sliding Mode Control (SMC) has gained popularity in many fields due to its robust
performance in the presence of external disturbances and parametric uncertainty [1]. The
traditional SMC utilizes discontinuous control, and the system behaves as a reduced-order
system when the system is in sliding mode. It ensures finite-time convergence of sliding

surface, but the system states converge to zero asymptotically.

Many researches have been carried to reduce the chattering effect in the literature [2, 3].
Among several methodologies present in the literature, Super Twisting Control became
popular because of continuous control, finite-time convergence of sliding variable, and its
derivative [4]. Many applications were constructed using a super twisting controller, such as
n-link manipulator [5], biotechnological process [6], Unmanned Aerial Vehicles [7], wind
turbines [8], permanent magnet synchronous linear motor [9], induction generator [10] to
name just a few. In this paper, an observer is designed to estimate the derivative of an \(n-\)th
state of an \(n-\)th order system, which utilizes the Super Twisting algorithm for the

estimation.

The restriction of reduced-order system dynamics and/ or asymptotic convergence of system
states is overcome by some techniques i.e. Terminal Sliding Mode Control [11], Higher-Order
Sliding Mode control (12, 13], Full Order Sliding Mode Control [14, 15]. Terminal Sliding Mode
Control (TSMC) utilizes a non-linear sliding surface, which ensures finite convergence of
system states, fast response, and higher precision. The convergence of system states becomes
slower when they are near the origin, and the control is singular in nature at the origin [16].
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Higher-Order Sliding Mode Control (HOSMC) ensures finite-time convergence of sliding
variables and their derivatives with a continuous-time control input. The performance of
HOSMC deteriorates in the presence of unmodeled dynamics and requires relative degree one
[17].

Initially, Full Order Sliding Mode Control (FOSMC) was proposed to overcome the limitation of
reduced-order dynamics. The FOSMC proposed in [14] eliminates the chattering issue, and it
has attractive features like finite-time convergence of sliding variable, system states, and the
dynamics of the system is full order when the system is in sliding mode. However, for an \(n-
\)th order system, the implementation of FOSMC requires all system states (\(x_1, x_2, \ldots
x_n\)) and the derivative of state \(x_n\) (i.e. \(\dot{x} n\)). This requires an additional
sensor for the measurement of signal \(\dot{x}_n\); it may not be feasible in many practical
systems. In this paper, the FOSMC is made implementable using only system states (\(x_1,
x_2,\ldots x_n\)). The Super Twisting Observer (STO) is proposed to estimate the derivative
of \(x_n\) without using any additional sensors. The STO ensures finite-time convergence of
estimation errors simultaneously; it retains all attractive features of FOSMC. The Super
Twisting Observer reported in the literature either estimates the system state(s) and/ or
estimates an unknown disturbance acting on the system [4, 18, 19]. In contrast to the reported
applications, a super twisting observer is proposed to estimate the derivative of the system

state in this paper.

The rest of the paper is organized as follows: Sect. 2 describes the problem statement for an
\(n-\)the order non-linear uncertain system. The super twisting observer-based full order
sliding mode control is derived in Sect. 3. The performance of proposed scheme is compared
with a non-linear extended state observer and a sliding mode observer based control in Sect. 4
and experimental validation of the proposed scheme is shown in Sect. 5 and followed by the

conclusion in Sect. 6.

2 Problem statement

2.1 System dynamics

Consider \(n-\)th order non-linear uncertain system
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SS\begin{aligned} \dot{x} 1&= x 2 \nonumber \\&\vdots \nonumber \\ \dot{x} {n-1}&=
x_n \nonumber \\ \dot{x} {n}&= f(\varvec{x}t) + b \Big (u+\bar{d}(\varvec{x},t)\Big )
\end{aligned}ss

(1)

where, \(\varvec{x} = \begin{bmatrix} x_1,\,\, x_2, \,\, \ldots , \,\, x_{n-1},\,\, x n
\end{bmatrix}AT\) is the system states, the function \(f(\varvec{x},t)\) is known
continuous-time function, b is the known input parameter of the system and u is the control
input to be designed.

Assumption 1

The term \(\bar{d}(\varvec{x},)\) is a partial known function, which represents the

parametric uncertainty and unknown external disturbances. It satisfies following condition:

SS\begin{aligned} \left| \bar{d}(\varvec{x},t) \right| \le k_{d} \end{aligned}SsS
(2)

where \(k_d > 0\) is a bounded constant.

Assumption 2

The derivative of disturbance \(\bar{d}(\varvec{x},t)\) satisfies following condition:

SS\begin{aligned} \left| \dot{\bar{d}}(\varvec{x},t)\right| < \gamma _{d} \end{aligned}S$$
(3)

where \(\gamma _d\) is a bounded constant.

The objective of control law is to design a full order sliding mode control for the system (1) and
established the sliding motion in finite time in the presence of unknown external
disturbances.
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2.2 Control law

In order to show the need of super twisting observer initially full order sliding mode control
[14]is explained by considering that the derivative of \(n-\)th state is available for the design
of control law. it is observed that the implementation FOSMC requires the system states as
well as the derivative of \(n-\)th state. In order to accomplish the need of additional signal
(ie., the derivative of \(n-\)th state) for an implementation of FOSMC, a super twisting

observer is designed. Defining the sliding variable for the system (1) as:

$S\begin{aligned} s = \dot{x} n + \sum _{i=1}A{n} c_i\, \text {sgn}(x_i) \left| x_i \right|
A\alpha _i} \end{aligned}$$

(4)

where the coefficients \(c_i> 0\) are selected such that the polynomial \(sAn+ \sum _{i=0}
Mn-1} c_{n-i} sA{n-i-1}\) is Hurwithz. The coefficients \(\alpha _i\) are selected as per [14].

When the sliding mode is established \(s = 0,\) the system will behave as

SS\begin{aligned} \dot{x} n + \sum _{i=1}A{n} c_i\, \text {sgn}(x_i) \left| x_i \right|
A\alpha _i} = 0 \end{aligned}S$

(5)

The control input u is selected as:

SS\begin{aligned} u = \frac{1}{b } \Big (u_{\text {eq}} + u_n\Big ) \end{aligned}S$

(6)

where \(b \ne 0\). The control input consists two parts: the equivalent control input
\(u_{eq}\) and the disturbance compensation term \(u_n\). The equivalent control input
\(u_{eqg}\) is selected as:
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SS\begin{aligned} u {eq} = -f(\varvec{x},t) - \sum _{i=0}A{n} c_ i\, \text {sgn}(x_i) \left|
x_i\right| A{\alpha i} \end{aligned}$$

(7)

The disturbance compensation control input is designed as follows:

SS\begin{aligned}&\dot{u} n + \lambda u_n = v \nonumber \\&{v} = -\Big (k_d + \lambda
\gamma _d + \delta \Big ) \text {sgn}(s) \end{aligned}SS$

(8)
where, the control gains are selected as \(\lambda > 0\) and \(\delta >0\).

Remark1

The sliding variable s will reach to zero in finite time and similarly the system states \(x_1, x_2

\ldots , x_n\) will also converge to zero in finite time [14].

Remark 2

If the system states (\(x_1, x_2 \ldots , x_n\)) and the derivative of state \(x_n\) (i.e. \(\dot{x}
_n\)) are available for the implementation, one can apply the FOSMC to system (1) as shown in
[14]. For many practical system, the measurement of system states is available but the
measurement of derivative of state may not be possible because of an unavailability of sensor

or the solution is very expensive.

In this paper, a Super Twisting Observer is employed to estimate the derivative of \(n-th\)
system state of an \(n-\)th order system. It is shown in the paper that when the STO based
FOSMC is applied to system (1), the estimation of derivative of system state and the

convergence of sliding variable can be achieved.

3 Super twisting observer based control
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In this section, first a super twisting observer is presented to estimate an \(n-\)th state and
the derivative of \(n-\)th state of an \(n-\)the order non-linear uncertain system and then

the full order sliding mode control law based on a STO is derived.

3.1STO

The dynamics of super twisting observer to estimate an \(n-\)th system state (\(z_1 = x_n\))

and the derivative of \(n-\)th system state \(z_2 = \dot{x}_n\) of (1) is given by

SS\begin{aligned}&\dot{\hat{z}} 1 =\hat{z} 2 + k_1\left| {z} 1 - \hat{z} 1 \right|
A\frac{1}{2}} \text {sgn}({z}_1 - \hat{z}_1) \nonumber \\&\dot{\hat{z}} 2 =k 2\)\, \text
{sgn}({z}_1 - \hat{z} 1) \end{aligned}SSs

(9)

where, the \(k_1\) and \(k_2\) are the observer gains to be designed, \(\hat{z}_1\) is the
estimate of \(n-\)th system state \(x_{n}\) \(= z_1\) and \(\hat{z}_2\) is the estimate of
derivative of \(n-\)th system state \(\dot{x}_n\) \(=z_2\).

Let the estimation error defined as \(\tilde{z} 1=z 1-\hat{z} _1,\) \(\tilde{z} 2=2z_2 -
\hat{z} 2.\) The dynamics of observer can be written as

SS\begin{aligned} \dot{\hat{z}} 1&=\hat{z} 2 + k_1\left| \tilde{z}_1 \right| A{\frac{1}{2}}
\text {sgn}(\tilde{x}_2) \nonumber \\ \dot{\hat{z}} 2&=k 2\)\, \text {sgn}(\tilde{z}_1)
\end{aligned}SS

(10)

The error dynamics of STO calculated using (1) and (10) is given by

SS\begin{aligned} \dot{\tilde{z}} 1&= \tilde{z}_2 - k_1\left| \tilde{z} 1 \right| A{\frac{1}
1233 \text {sgn}(\tilde{z}_1) \nonumber \\ \dot{\tilde{z}} 2&= \frac{\partial f(\varvec{x},t)}
{\partial \varvec{x}} \bar{d}(\varvec{x},t) + \dot{\bar{d}}(\varvecix},t) + b\dot{u} - k_2\,\,
\text {sgn}(\tilde{z}_1) \end{aligned}S$
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(1)

Remark 3

As per Assumption 2, the derivative of disturbance is bounded. If the observer gains are
selected as \(k_1\ge 1.5 \sqrt{\beta _{d}}\) and \(k_2 \ge 1.1\beta _{d}\) \(\Big (\text {where\,
\,} \beta _d = \Big |\frac{f(\varvec{x},t)}{\partial \varvec{x}} \Big |k_d +b\dot{u}+ \gamma
_d\Big )\) then the estimation errors go to zero in finite time. Thus, the estimation errors go
to zero, one can write \(x_n = \hat{z}_1\) and \(\dot{x}_{n} = \hat{z}_2\) after finite time.

As the estimation errors \(\tilde{z}_1\) and \(\tilde{z}_2\) satisfy the differential inclusion

SS\begin{aligned} \dot{\tilde{z}} 1&=\tilde{z} 2 - k_1\left| \tilde{z}_1 \right| A{\frac{1}
121} \text {sgn}(\tilde{z} 1) \nonumber \\ \dot{\tilde{z}} 2&\in [\beta _dA{+},\,\, \beta
_dA{-3]1 -k 2\)\, \text {sgn}(\tilde{z}_1) \end{aligned}SS$

(12)

The derivative of \(\dot{\tilde{z}}_1\) can be calculated as

SS\begin{aligned} \ddot{\tilde{z}}_1\in [\beta _dA{+},\,\, \beta _dA{-}] - \frac{k_1
\dot{\tilde{z}} 13}{2|\tilde{z} 1 [A{1/2}} - k_2 \text {sgn}(\tilde{z} 1) \end{aligned}$$

(13)

The finite time convergence of \(\tilde{z}_1\) can be proved in the sense of Fillipov’s
differential inclusions [20]. When the estimation error goes to zero \(\tilde{z}_1 = 0\) then
one can write \(\tilde{z}_2 = \dot{\tilde{z}}_1\). The dynamics of \(\tilde{z}_2\) is given by

SS\begin{aligned} \dot{\tilde{z}}_2 = [\beta _dA{+},\,\, \beta _dA{-}] - k_2 \text {sgn}
(\tilde{z}_1) \end{aligned}SS

(14)
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Thus, the estimation error \(\tilde{z}_2\) is bounded in a small vicinity of the origin i.e.

SS\begin{aligned} 0 < k_2 - \beta _dA{-}\le |\dot{\tilde{z}} 2 | \lek 2 + \beta dA{+}
\end{aligned}ss

(15)

Thus, the estimation errors \(\tilde{z}_1\) and \(\tilde{z}_2\) converge to zero in finite-time.

3.2FOSMC

The STO based FOSMC can be implemented as follow. The sliding surface \(\hat{s}\) is given
by

SS\begin{aligned} \hat{s} = \hat{\dot{x3}}_n + c_n \text {sgn}(\hat{x}_n) \left| \hat{x} n
\right| A{\alpha _n} + \sum _{i=1}A{n-1} c_i\, \text {sgn}(x_i) \left| x_i \right| A{\alpha _i}
\end{aligned}SS

(16)

The control law u can be implemented as

SS\begin{aligned} u = \frac{1}{b } \Big (u_{\text {eq}} + u_n\Big ) \end{aligned}S$

(17)

where, the equivalent control \(u_{\text {eq}}\) and the disturbance compensation control
\(u_n\) are now updated as:

SS\begin{aligned}&u_{\text {eq}} = -f(\varvec{x},t) - c_n \text {sgn}(\hat{x}_n) \left|
\hat{x} n \right| A{\alpha_n} - \sum _{i=13A{n-1} c_i\, \text {sgn}(x_i) \left| x_i \right|
A{\alpha _i} \nonumber \\&\dot{u}_n + \lambda u_n = v \nonumber \\&{v} = -\Big (k_d +
\lambda \gamma _d + \delta \Big ) \text {sgn}(\hat{s}) \end{aligned}S$

(18)
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Once the estimation errors \(\tilde{z}_1\) and \(\tilde{z}_2\) go to zero, the sliding variable
becomes \(s = \hat{s}.\) Thus, the sliding variable goes to zero in finite time and the states
converges to desired values in finite time [14]. Next the performance of proposed scheme is

verified by simulation results.

4 Simulation results

To verify the effectiveness of proposed scheme, it is applied to a two link robotic manipulator
affected by parametric uncertainty. The performance of proposed scheme is compared with a
non-linear extended state observer and a sliding mode observer for the same level of
parametric uncertainty. The simulations were carried out in MATLAB/ Simulink environment.

Fig.1
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(0,0) T

Schematic of two link robotic manipulator

{d)oe

(h) ¢

Comparative plots of two links manipulator: NESO (red dotted line), SMO (black dashed line) and STO
(blue solid line). (Color figure online)

The dynamics of two link manipulator shown in Fig. 1 is given by [21, 22]:

SS\begin{aligned}&\begin{bmatrix} M_{11}(q_2) &{} M_{123}(q_2) \\ M_{123}(q_2) &{}
M_{22} \end{bmatrix} \cdot \begin{bmatrix} \ddot{q}_1\\ &{}\ddot{q}_2 \end{bmatrix} +
\begin{bmatrix} B_{12}(q_2) \dot{q} 1A2 - 2B_{12}(q_2) \dot{q}_1\dot{q} 2 \\ B_{12}(q_2)
\dot{q}_2A2 \end{bmatrix} \nonumber \\&\quad + \begin{bmatrix} Q {1}(q_1,g_2)g\\

Q {2} (q_1, q 2)g \end{bmatrix} = \begin{bmatrix} \tau _1\\ \tau _2 \end{bmatrix}
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\end{aligned}ss

(19)

where, \(\tau _1=u_1\)and \(\tau _2 =u_2\) are the control inputs and the parameters are
given by,

SS\begin{aligned} M _{11}(q 2)&=(m_1+m_2)l_ 1A2 + m_21 2A2 +2m_11_11 2\cos (q_2) +
JI\\M {12}q 2)&=m 21 2A2+m 21 1r 2\cos(q 2) \\ M _{22}&=m 21 2A2+] 2\\
B {12}(q 2)&=m_ 2111 2\sin(q_2) \\Q {1}(q 1,9 2)&=(m_1+m_2)l 1\cos(q 2) +m_21 2

\cos (q_.1+q2)\\Q 2(q_1,q 2)&=m_21 2 \cos (q_1+ q_2) \end{aligned}SS

The actual parameters for simulations were considered as: \(m_1 = 0.5\) kg, \(m_2=1.5\) kg,
\(J_1=5\) kg\(\cdot \)m, \(J_2=5\) kg\(\cdot \)m, \(1.1=1\) m, \(1 2 = 0.8\) mand \(g = 9.81\)
m/s\(A2\). The performance of the proposed scheme is compared with two non-linear
observers i.e. a Non-linear Extended State Observer and a Sliding Mode Observer. The initial
conditions of plant is set as \(q_1=0\,\, \text {rad}, g 2 = 0.2\,\, \text {rad}, \dot{q} 1=
\dot{g} 2 =0\,\, \text {rad/s}\) and reference trajectories are selected as: \(q_{1r} = 0.2 +
0.7\sin (t)\) rad and \(q_{2r} = 0.3 + 0.6 \cos (1.5t)\) rad for all simulation results. The nominal

parameters

The non-linear extended state observer (NESO) is implemented [23, 24] to estimate the
derivatives of the states \(\dot{g} 1\) and \(\dot{g} 2\) as follows:

SS\begin{aligned} \dot{\hat{z}} 1&=\hat{z} {2} + \beta 1\, g 1(\tilde{z} 1) \nonumber \\
\dot{\hat{z}} 2&=\beta 2\, g 2(\tilde{z} 1) \end{aligned}SS

(20)

where, \(\hat{z} 1\) and \(\hat{z} 2\) are the estimates of \(z_1 = \dot{qg} i\) and \(z 2 =
\ddot{q} i\), for \(i = 1\,\, \text {and}\,\, 2.\) The non-linear function \(g_i(\tilde{z} 1)\) is
defined as:

SS\begin{aligned} g i(\tilde{z} 1) = {\left\{ \begin{array}{ll} |\tilde{z} 1 [A{\gamma i}
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\text {sgn}(\tilde{z} 1), \,\, &{} \text {if}\,\, [\tilde{z} 1| >\delta _i\\ \frac{\tilde{z} 1}
{\delta _iA{l1-\gamma _i}},\,\, &{} \text {otherwise}\,\, \end{array}\right. }, i=1,2.
\end{aligned}ss

(21)

where \(\tilde{z} 1=z 1-\hat{z} 1)), the parameters \(\delta _i > 0\) and \(0< \gamma _i <
1.\) The NESO parameters for the first and second links are selected as: \(\beta 1=10, \beta 2
=100, \gamma _1=0.1, \gamma _2 = 0.1, \delta _1 = 0.05, \delta _2 = 0.1}).

The Sliding Mode Observer (SMO) is implemented [25] as follows:

SS\begin{aligned} \dot{\hat{z}} 1&=\hat{z} 2 + {1 1} i\tilde{z} 1+ k {s_1} \text {sgn}
(\tilde{z} 1) \nonumber \\ \dot{\hat{z}} 2&={1 2} i\tilde{z} 2 + k_{s_2} \text {sgn}
(\tilde{z} 2) \end{aligned}S$S

(22)

where, \({L.1}_i, {1 2} i\) are the linear gains and \(k_1\), \(k_2\) are the switching gains of
the SMO. The signals \(\hat{z}_1\) and \(\hat{z}_2\) are the estimates of \(z_1 = \dot{q}_i\)
and \(z_2 =\ddot{q} i\), for \(i = 1\,\, \text {and}\,\, 2.\) The observer parameters are
selected for the first and second links as: \({1_1} 1={1.1} 2=10\),\({1.2} . 1={1.2} 2 =700\),
\(k_{s_1}=2.5\)and \(k_{s_2} =60.\)

The super twisting observer is implemented as per (17) with \(k_1 =10\) and \(k_2 = 20\) for
both of the links. The sliding variables are selected as per (16) of the revised manuscript with
\(c_1=50\)and \(c_2 = 50\) for the first link and \(c_1 = 20\) and \(c_2 = 20\) for the second
link. The control inputs are selected as per (17) and (18) with \(\tau = 0.1, \,\, k_{dis} = 15.\)
for both of the links. The non-linear functions are selected as: \(f_1(q,t) = \frac{B_{12}(q_2)
\dot{q} 1A2 - 2B {12}(q 2) \dot{q} 1\dot{q} 2}{M(q 2)}\) and \(f 2(q,t) = \frac{B_{12}
(g_2) \dot{g} 2A2}H{M(qg 2)}\). The disturbances are considered as: \(\bar{d} 1(\varvec{qg},t)
= \frac{Q 1(q_1, q_2)gH{M(q_2)}\) and \(\bar{d}_2(\varvec{qg}t) = \frac{Q 2(q_1, q_2)g}
{M(q_2)}\), where \(M(q_2) = M_{11}(q_2) M_{22} - {M_{123}A2(q_2)\).
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The comparative plots of the proposed scheme and the NESO and the SMO based control are
shown in Fig. 2. The tracking errors of both links of the manipulator are shown Fig. 2a—d. All
three methods are bringing the system states from their initial points to the desired reference
trajectories. The control inputs plots are shown in Fig.2e, {; it can be observed that the
proposed scheme is free from chattering as compare to the other two methods. Similarly, the
behavior of chattering can be observed in the sliding variables, as shown in Fig. 2¢g, h. The
comparative plots of estimation errors are shown in Fig. 2i—1, in the steady-state chattering
phenomenon, can be observed with a NESO and an SMO. The effect of chattered estimated
states and their derivatives can be seen in the control inputs in the comparative results. As the
magnitude of chattering in the estimated states increases, it induces chattering in the control

inputs and eventually in the system states.

5 Experimental validation

The 2-DOF helicopter model is a highly non-linear system with inputs coupling. A free body
diagram of the 2-DOF helicopter system is shown in Fig. 3. It consists of two Brush-less DC

motors to control motions over the pitch axis and yaw axis.
Fig.3
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¢
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A free body diagram of 2-DOF helicopter system

5.1 Dynamics

The non-linear dynamic model of 2-DOF Helicopter system [26] is given by

SS\begin{aligned} \ddot{\theta } =&- \frac{B_p \dot{\theta } + m 1A2\dot{\psi }A2 \sin
\theta \cos \theta + mgl\cos \theta }{J_{p} + m 1A2} \nonumber \\&+ \frac{k_{pp}HJ_{p} + m
1N2} u_p + \fractk_{py}HJ_{p} + m1A2} u_y \end{aligned}SS

(23)

SS\begin{aligned} \ddot{\psi } =&\frac{2m 1A2 \dot{\psi } \dot{\theta } \sin \theta \cos
\theta }HJ_y + mIA2 \cos A2\theta } - \frac{B_y \dot{\psi }}{J_y + mlA2 \cos A2\theta }
\nonumber \\&+ \frac{k_{yp}}{J_y + mlA2 \cos A2\theta } u_p + \fracfk_{yy}}{J y + mlA2
\cos A2\theta } u_y \end{aligned}S$

(24)

where \(\theta \) and \(\psi \) are the pitch angle and yaw angle respectively. The motor
voltages \(u_p\) and \(u_y\) are the control inputs to be designed. The control law is designed
by considering the system as two single input single output systems. The objective to design
control inputs \(u_p\) and \(u_y\) to track the desired pitch angle (\(\theta _r\)) and the
desired yaw angle (\(\psi _r\)) respectively.

Fig. 4
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Laboratory setup of 2-DOF helicopter system
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Experimental results for the proposed scheme: a \(\theta \) (solid line) and \(\theta _r\) (dashed line),
b \(\psi\) (solid line) and \(\psi _r\) (dashed line), c \(u_{p}\) (blue color) and \(u_y\) (orange color),
and d \(s_{p}\) (blue color) and \(s_y\) (orange color). (Color figure online)

Table 1 Nominal parameters of 2-DOF helicopter system [26]

5.2 Hardware setup

The hardware setup is mounted on the fixed base for unlimited rotation around the yaw axis
and \(\pm 0.707\) rad rotation along the pitch axis. It consists of two optical encoders to sense
the pitch angle and the yaw angle. The optical encoders are connected to the data-acquisition
card (Q2-DAQ). The commands given to the motors are amplified by the power amplifier
(Volt-PAQ). The reference trajectories can be generated either by the joystick or the Simulink
blocks. The Q2-DAQ and the Volt-PAQ are used to provide an interface between the hardware
setup and a Personal Computer. The proposed algorithm is implemented in the MATLAB/
Simulink, and then hardware-in-loop experiments were carried out at a laboratory, as shown
in Fig. 4. The description of the systemn parameters and their nominal values are given in Table
1.

5.3 Controller design
The control inputs \(u_p\) and \(u_y\) are designed by considering the pitch and yaw

dynamics as two sub-systems given in (23) and (24). The effect of input coupling is
compensated in the control inputs by considering the input coupling acting as an external
disturbance on the subsystems. The objective of the control law design is to bring the tracking
errors \(e_\theta = \theta -\theta r\) and \(e_\psi = \psi - \psi _r\) to zero in the finite-time.
The control parameters are selected as: \(c_1=3,\,\,c_2 = 4),\, \alpha _1=9/16,\,\, \alpha _2
=9/23,\,\, \tau = 0.15\,\, k 1=5)\,\, k 2=10,\,\, k {\text {dis}} = 3.\) The known non-linear
functions are selected as:
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SS\begin{aligned} f p(x,t)&= \frac{B_p \dot{\theta } + m 1A2\dot{\psi }A2 \sin \theta \cos
\theta + mgl\cos \theta HJ {p} + m1A2} \end{aligned}Ss$

(25)

SS\begin{aligned} f y(x,t)&= \frac{2m 1A2 \dot{\psi } \dot{\theta } \sin \theta \cos \theta }
{J_y + mlIA2 \cos A2\theta } \end{aligned}SS$

(26)

for the pitch and yaw dynamics respectively. The other non-linear terms, the gravitation force
and the difference between actual parameters and nominal parameters are considered as the

disturbances acting on the individual channel.

5.4 Results

Figure 5 shows the experimental results obtained with the proposed controller. Figure 5a, b
show the tracking performance of the pitch angle and the yaw angle respectively with the
proposed scheme. Thus, the proposed scheme achieves the control objective to bring the
tracking errors to zero. The control inputs \(u_p\) and \(u_y\) are designed in such a way that
the change in a reference trajectory of one sub-system has minimal effect on the other sub-
system, which can be observed from the plots of control inputs \(u_p\), \(u_y\) and the sliding
variables \(s_p\), \(s_y\) are shown in Fig. 5c¢, d respectively. Thus, the proposed scheme

successfully controls a non-linear uncertain system.

6 Conclusion

In this paper, the STO based FOSMC is implemented for an \(n-\)th order non-linear
uncertain system. Using STO, the estimation error goes to zero in finite time. It preserves the
features of continuous control and finite-time convergence of the sliding variable and system
states with a lower number of the sensor. The proposed scheme is compared with a non-linear
extended state observer, and a sliding mode observer based FOSMC, and it shows better results
in terms of smoothness of the control input and the tracking of the reference trajectories. The

proposed scheme is validated on an experimental setup of the 2-DOF helicopter model.
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