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Abstract

In this paper, we develop the existence and uniqueness theory of fractional differential equation
involving Riemann-Liouville differential operator of order 0 < α < 1, with advanced argument and
integral boundary conditions. We investigate the uniqueness of the solution by using Banach fixed
point theorem, we apply the comparison result to obtain the existence and uniqueness of solution
by monotone iterative technique also by using weakly coupled extremal solution for the nonlinear
boundary value problem (BVP). As an application of this technique, existence and uniqueness results
are obtained.
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1. Introduction and preliminaries

In this paper, we study the following nonlinear (BVP) for Riemann-Liouville fractional differential
equation with advanced argument and integral boundary conditions:{

Dα
0+x(t) = f (t, x(t), x(θ(t))) ,

x(0) = λ
∫ T

0
x(s)ds+ r,

(1.1)

where t ∈ J = [0, T ](T > 0), f (t, x(t), x(θ(t))) ∈ C (J × R2,R, ) , θ ∈ C (J, J) , t ≤ θ(t), λ, r ∈ R
and Dα

0+ is the Riemann-Liouville fractional derivative of order α (0 < α < 1).
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Recently, the fractional differential equations with advanced argument have been of great interest
in the study of various problems in physics, mechanics, chemistry, engineering, economics (see [3, 8,
15] and references therein). Many people have paid more and more attention to study the existence
and uniqueness of a solution of different problems in fractional differential equations with deviating
argument (see [1, 4, 5, 6, 7]). However, the theory of nonlinear fractional differential equation with
integral boundary value problem is still in the initial stage. The monotone iterative method combined
with the technique of upper and lower solutions provides an effective mechanism to prove existence
results for nonlinear differential equations. For details (see [10, 11, 12, 13]).

The paper is organized as follows: In Section 1, we present some useful definitions and lemmas
and fundamental facts of fractional calculus. In Section 2, by applying Banach fixed point theorem
with the corresponding weighted norm, we prove the uniqueness of solution for nonlinear BVP(1.1).
In Sections 3, 4, we develop the monotone iterative technique for solving nonlinear BVP(1.1), and
existence and uniqueness results is obtained. Two converging monotone sequences are obtained
with the monotone iterative technique based on upper and lower solutions or weakly coupled ones.
Those two converging monotone sequences will converge to the extremal solution or weakly coupled
extremal solution of nonlinear BVP(1.1). Lastly, we illustrate our result with a suitable example.

We need to recall the definitions of Riemann-Liouville integral, derivative and some basic lemmas
which will be used in further discussions. First, we introduce the Banach space C1−α by
C1−α (J,R) = {x ∈ C (J,R) : t1−αx(t) ∈ C (J,R)} with the norm ‖x‖C1−α

= max
t∈J
|t1−αx(t)|.

Definition 1.1. [9, 14] The Riemann-Liouville fractional integral of order α > 0 for a continuous
function x(t) ∈ C([0, T ]) is defined as

Iα0+x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds,

provided the integral exists. Γ(α) denotes Euler’s Gamma function.

Definition 1.2. [9, 14] For function In−α0+ x(t) ∈ ACn[0, T ] the Riemann-Liouville derivative of order
α (n− 1 < α ≤ n) can be written as

Dα
0+x(t) =

(
d

dt

)n (
In−α0+ x

)
(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1x(s)ds, t > 0.

Lemma 1.3. [9] Let x(t) ∈ Cn[0, T ], α ∈ (n− 1, n) , n ∈ N. Then for t ∈ J,

Iα0+D
α
0+x(t) = x(t)−

n−1∑
k=0

tk

k!
x(k)(0).

Lemma 1.4. [2] Let m ∈ C1−α(J,R) and for any t1 ∈ (0, T ], we have

m(t1) = 0 and m(t) ≤ 0 for 0 ≤ t ≤ t1.

Then it follows that,
Dα

0+m(t1) ≥ 0.

Lemma 1.5. [17] (Lebesgue’s dominated convergence theorem) Let E be a measurable set and let
{fn} be a sequence of measurable functions such that lim

n→∞
fn(x) = f(x) a.e. in E, and for every

n ∈ N, |fn(x)| ≤ g(x) a.e. in E, where g is integrable on E. Then

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx.
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Lemma 1.6. Function x(t) ∈ C1−α (J,R) is a solution of the nonlinear BVP(1.1) if and only if x(t)
is a solution of the integral equation

x(t) = λ

∫ T

0

x(s)ds+ r +
1

Γ(α)

∫ t

0

(t− s)α−1f (s, x(s), x(θ(s)))ds. (1.2)

Proof . Assume that x(t) satisfies the nonlinear BVP(1.1). From the first equation of the nonlinear
BVP(1.1) and Lemma (1.3), we have

x(t) = λ

∫ T

0

x(s)ds+ r +
1

Γ(α)

∫ t

0

(t− s)α−1f (s, x(s), x(θ(s)))ds.

Conversely, assume that x(t) satisfies (1.2). It is easy to check that x(t) ∈ C1−α (J,R). Applying the
operator Dα

0+ to both sides of (1.2), we have

Dα
0+x(t) = f (t, x(t), x(θ(t))).

In addition, we can easily show that x(0) = λ
∫ T

0
x(s)ds+ r. The proof is complete. �

Corollary 1.7. [16] Let {xε(t)} be a family of continuous functions defined on J , for each ε > 0,
which satisfies {

Dα
0+xε(t) = f (t, xε(t), xε(θ(t))),

xε(0) = λ
∫ T

0
xε(s)ds+ r,

(1.3)

where |f (t, xε(t), xε(θ(t)))| ≤M for t ∈ J . Then the family {xε(t)} is equicontinuous on J .

2. Uniqueness of solution of BVP(1.1)

In this section, we discuss the uniqueness of solution of the nonlinear BVP(1.1) for Riemann-Liouville
fractional differential equation with advanced argument and integral boundary conditions.

Theorem 2.1. Assume that:
(H1) f ∈ C (J × R2,R) , θ ∈ C (J, J) , t ≤ θ(t), t ∈ J ,
(H2) there exists nonnegative constants M,N such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ M |x1 − y1|+N |x2 − y2| , ∀t ∈ J, xi, yi ∈ R, i = 1, 2.

Then the nonlinear BVP(1.1) has a unique solution.

Proof . We define the operator T : C1−α(J,R)→ C1−α(J,R) as follows:

Tx(t) = λ

∫ T

0

x(s)ds+ r +
1

Γ(α)

∫ t

0

(t− s)α−1f (s, x(s), x(θ(s))ds.

Clearly, the operator T is well defined on C1−α(J,R). Next, we show that T is a contraction operator.
For convenience, let

λ <
Γ(2α)− Γ(α)Tα (M +N)

TΓ(2α)
. (2.1)
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Using assumption (H2), for any x, y ∈ C1−α(J,R), we have

‖Tx− Ty‖C1−α
= max

t∈J

∣∣t1−α [(Tx)(t)− (Ty)(t)]
∣∣

≤ max
t∈J

t1−αλ

∫ T

0

|x(s)− y(s)| ds+ max
t∈J

t1−α

Γ(α)

∫ t

0

(t− s)α−1

× |f (s, x(s), x(θ(s)))− f (s, y(s), y(θ(s)))| ds

≤ λ

∫ T

0

ds ‖x− y‖C1−α
+ max

t∈J

t1−α

Γ(α)

∫ t

0

(t− s)α−1

× [|M (x(s)− y(s))|+ |N (x(θ(s))− y(θ(s)))|] ds

≤
[
λT +

Γ(α)Tα

Γ(2α)
(M +N)

]
‖x− y‖C1−α

.

According to (2.1) and the Banach fixed point theorem, the nonlinear BVP(1.1 has a unique solution.
The proof is complete. �

Corollary 2.2. Suppose that M, N are constants and h ∈ C1−α(J,R). The following linear problem{
Dα

0+x(t) +Mx(t) +Nx(θ(t)) = h(t), t ∈ J, 0 < α < 1,

x(0) = λ
∫ T

0
x(s)ds+ r,

(2.2)

has a unique solution x(t) ∈ C1−α(J,R).

Proof . It follows from Theorem 2.1. �

3. Monotone iterative technique of BVP(1.1)

In this section, we mainly investigate the existence and uniqueness of solution of the nonlinear
BVP(1.1) for Riemann-Liouville fractional differential equation with advanced argument by the
method of lower and upper solutions combined with monotone iterative technique. Now, we de-
fine the sector as follows:

[υ0, w0] = {x ∈ C1−α(J,R) : υ0(t) ≤ x(t) ≤ w0(t) ∀t ∈ J}.

First, we prove the following comparison result which plays an important role in our research.

Lemma 3.1. Let α ∈ (0, 1), θ(t) ∈ C (J, J) and t ≤ θ(t) on J . Suppose that p ∈ C1−α(J,R) satisfies
the inequalities {

Dα
0+p(t) ≤ −Mp(t)−Np(θ(t)) ≡Fp(t), t ∈ J
p(0) ≤ 0,

(3.1)

where M and N are constants. If

−Tα (M +N) Γ(1− α) < 1,

then p(t) ≤ 0 for all t ∈ J .
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Proof . Put pε(t) = p(t)− ε, ε > 0. Then

Dα
0+pε(t) = Dα

0+p(t)−Dα
0+ε

< −Mpε(t)−Npε(θ(t)) + ε[−(M +N)− 1

tαΓ(1− α)
]

< Fpε(t),

and

pε(0) = p(0)− ε < 0.

We prove that pε(t) < 0 on J . Assume that pε(t) ≮ 0 on J . Thus there exists t1 ∈ (0, T ] such that
pε(t1) = 0 and pε(t) < 0, t ∈ (0, t1). In view of Lemma 1.4 we have Dα

0+pε(t1) ≥ 0. It follows that

0 < Fpε(t1) = −Npε(θ(t1)).

If N = 0, then 0 < 0, which is a contradiction. If −N < 0, then pε(θ(t1)) < 0, which is again a
contradiction. This proves that pε(t) < 0 on J . So p(t)− ε < 0 on J . Taking ε→ 0, we get required
result. �

Definition 3.2. A pair of functions [υ0, w0] in C1−α(J,R) is called lower and upper solutions of the
nonlinear BVP(1.1) for λ = 1 if

Dα
0+υ0

(t) ≤ f (t, υ0(t), υ0(θ(t))) , υ0(0) ≤
∫ T

0
υ0(s)ds+ r,

Dα
0+w0

(t) ≥ f (t, w0(t), w0(θ(t))) , w0(0) ≥
∫ T

0
w0(s)ds+ r.

Theorem 3.3. Assume that:

(i) f ∈ C (J × R2,R) , θ ∈ C (J, J) , t ≤ θ(t), t ∈ J,

(ii) functions υ0(t) and w0(t) in C1−α(J,R) are lower and upper solutions of the nonlinear BVP(1.1)
such that υ0(t) ≤ w0(t) on J,

(iii) there exists nonnegative constants M, N such that function f satisfies the condition

f(t, x1, x2)− f(t, y1, y2) ≥ −M(x1 − y1)−N(x2 − y2),

for y0(t) ≤ y1 ≤ x1 ≤ w0(t), υ0(θ(t)) ≤ y2 ≤ x2 ≤ w0(θ(t)). Then there exists monotone
sequences {υn(t)} and {wn(t)} in C1−α(J,R) such that

{υn(t)} −→ υ(t) and {wn(t)} −→ w(t) as n −→∞

where υ(t) and w(t) are minimal and maximal solutions of the nonlinear BVP(1.1) respectively,
and υ(t) ≤ x(t) ≤ w(t) on J .
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Proof . For any η ∈ C1−α(J,R) such that η ∈ [υ0, w0], We consider the following linear problem:{
Dα

0+x(t) = f (t, η(t), η(θ(t))) +M [η(t)− x(t)] +N [η(θ(t))− x(θ(t))],

x(0) =
∫ T

0
x(s)ds+ r.

(3.2)

Obviously, by Corollary 2.2, the linear problem (3.2) has a unique solution x(t).
We next define the iterates as follows:{

Dα
0+υn+1(t) = f (t, υn(t), υn(θ(t)))−M [υn+1(t)− υn(t)]−N [υn+1(θ(t))− υn(θ(t))] ,

υn+1(0) =
∫ T

0
υn(s)ds+ r,

(3.3)

and{
Dα

0+wn+1(t) = f (t, wn(t), wn(θ(t)))−M [wn+1(t)− wn(t)]−N [wn+1(θ(t))− wn(θ(t))] ,

wn+1(0) =
∫ T

0
wn(s)ds+ r,

(3.4)
Obviously, the above arguments imply the existence of the unique solutions υn+1(t) and wn+1(t) of the
problems (3.3), (3.4). By putting n = 0 in the problems (3.3), (3.4), we get the existence of solutions
υ1(t) and w1(t). We show that υ0(t) ≤ υ1(t) ≤ w1(t) ≤ w0(t). For this, consider p(t) = υ1(t)− υ0(t)
on J , and υ0(t) is the lower solution of the nonlinear BVP(1.1). Then we have

Dα
0+p(t) = Dα

0+υ1(t)−Dα
0+υ0(t)

≥ f (t, υ0(t), υ0(θ(t)))− f (t, υ0(t), υ0(θ(t)))−
M [υ1(t)− υ0(t)]−N [υ1(θ(t))− υ0(θ(t))]

≥ −Mp(t)−Np(θ(t)),

and

p(0) = υ1(0)− υ0(0) ≥
∫ T

0

υ0(s)ds+ r −
∫ T

0

υ0(s)ds− r = 0.

By Lemma 3.1, we get p(t) ≥ 0, implies that υ1(t) ≥ υ0(t) on J . Similarly, we can prove w1 ≤ w0

and υ1(t) ≤ w1(t) on J . Thus υ0(t) ≤ υ1(t) ≤ w1(t) ≤ w0(t). Assume that for some k > 1,
υk−1(t) ≤ υk(t) ≤ wk(t) ≤ wk−1(t) on J. We claim that υk(t) ≤ υk+1(t) ≤ wk+1(t) ≤ wk(t) on J.
To prove the claim, set p(t) = υk+1(t)− υk(t), we have

Dα
0+p(t) = Dα

0+υk+1(t)−Dα
0+υk(t)

= f (t, υk(t), υk(θ(t)))−M [υk+1(t)− υk(t)]−N [υk+1(θ(t))− υk(θ(t))]−
f (t, υk−1(t), υk−1(θ(t))) +M [υk(t)− υk−1(t)] +N [υk(θ(t))− υk−1(θ(t))]

≥ −M [υk+1(t)− υk(t)]−N [υk+1(θ(t))− υk(θ(t))]
≥ −Mp(t)−Np(θ(t)),

and

p(0) = υk+1(0)− υk(0) =

∫ T

0

υk(s)ds+ r −
∫ T

0

υk−1(s)ds− r

≥
∫ T

0

[υk(s)− υk(s)] ds = 0.



Fractional differential equations with advanced arguments . . . 12 (2021) No. 2, 1413-1423 1419

By Lemma 3.1, we get p(t) ≥ 0, implies that υk+1(t) ≥ υk(t) on J . Similarly, we can prove that
wk+1(t) ≤ wk(t) and υk+1(t) ≤ wk+1(t) on J . By the principle of mathematical induction, we have

υ0 ≤ υ1 ≤ υ2 ≤ · · · ≤ υk ≤ wk ≤ · · · ≤ w2 ≤ w1 ≤ w0 on J. (3.5)

Obviously, the sequences {υn(t)} and {wn(t)} are uniformly bounded. We observe that {Dα
0+υn}

and {Dα
0+wn} are also uniformly bounded on J , in view of the relations (3.3) and (3.4). Then

using Corollary 1.7, we can conclude that sequences {υn(t)},{wn(t)} are equicontinuous. Hence
by the Ascoli-Arzela theorem, the sequences {υn(t)} and {wn(t)} converge uniformly to υ and w,
respectively on J . Using corresponding fractional Volterra integral equations

υn+1(t) = υn+1(0) +
1

Γ(α)

∫ t

0

(t− s)α−1 [f (s, υn(s), υn(θ(s))) −

M [υn+1(s)− υn(s)]−N [υn+1(θ(s))− υn(θ(s))]] ds

wn+1(t) = wn+1(0) +
1

Γ(α)

∫ t

0

(t− s)α−1 [f (s, wn(s), wn(θ(s))) −

M [wn+1(s)− wn(s)]−N [wn+1(θ(s))− wn(θ(s))]] ds

By Lebesgue’s dominated convergence Lemma 1.5 as n −→ ∞, it follows that υ(t) and w(t) are
solutions of the linear problem (3.2).
Now, we prove that υ(t) and w(t) are the minimal and maximal solutions of the nonlinear BVP(1.1).
Let x(t) be any solution of the nonlinear BVP(1.1) different from υ(t) and w(t), so that there exists
k such that υk(t) ≤ x(t) ≤ wk(t) on J . Set p(t) = x(t)− υk+1(t), we have

Dα
0+p(t) = Dα

0+x(t)−Dα
0+υk+1(t)

= f (t, x(t), x(θ(t)))− f (t, υk(t), υk(θ(t))) +

M [υk+1(t)− υk(t)] +N [υk+1(θ(t))− υk(θ(t))]
≥ −Mp(t)−Np(θ(t)),

and

p(0) = x(0)− υk+1(0) =

∫ T

0

[x(s)− υk(s)] ds ≥ 0.

By Lemma 3.1, we get p(t) ≥ 0, implies that x(t) ≥ υk+1(t) for all k on J . Similarly we can prove
x(t) ≤ wk+1(t) for all k on J . Since υ0(t) ≤ x(t) ≤ x0(t) on J .
By induction it follows that υk(t) ≤ x(t) and x(t) ≤ wk(t) for all k. Thus υk(t) ≤ x(t) ≤ wk(t) on J .
Taking limit as k −→∞, we get υ(t) ≤ x(t) ≤ w(t) on J .
The functions υ(t) and w(t) are the minimal and maximal solutions to the nonlinear BVP(1.1). The
proof is complete. �
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Next, we obtain the uniqueness of solution of the nonlinear BVP(1.1) as follows:

Theorem 3.4. Assume that:

(i) all the conditions of the Theorem 3.3 hold,

(ii) there exists nonnegative constants M, N such that function f satisfies the condition

f(t, x1, x2)− f(t, y1, y2) ≤M (x1 − y1) +N (x2 − y2) , (3.6)

for υ0(t) ≤ y1 ≤ x1 ≤ w0(t), υ0(θ(t)) ≤ y2 ≤ x2 ≤ w0(θ(t)). Then the nonlinear BVP(1.1) has
a unique solution.

Proof . Since υ(t) ≤ w(t), it is sufficient to prove υ(t) ≥ w(t). Consider p(t) = w(t)− υ(t), then

Dα
0+p(t) = Dα

0+w(t)−Dα
0+υ(t)

= f (t, w(t), w(θ(t)))− f (t, υ(t), υ(θ(t)))

≤ Mp(t) +Np(θ(t)),

and

p(0) = w(0)− υ(0) ≤ 0.

By Lemma 3.1, we get p(t) ≤ 0, implies that w(t) ≤ υ(t), which means w(t) = υ(t) is a unique
solution of the nonlinear BVP(1.1). The proof is complete. �

4. Weakly coupled lower and upper solutions of BVP(1.1)

In this section, we investigate the existence and uniqueness of solution of the nonlinear BVP(1.1)
by weakly coupled lower and upper solutions.

Definition 4.1. A pair of functions [υ0, w0] in C1−α(J,R) is called weakly coupled lower and upper
solutions of the nonlinear BVP(1.1) for λ = −1 if

Dα
0+υ0

(t) ≤ f (t, υ0(t), υ0(θ(t))), υ0(0) ≤ −
∫ T

0
w0(s)ds+ r,

Dα
0+w0

(t) ≥ f (t, w0(t), w0(θ(t))), w0(0) ≥ −
∫ T

0
υ0(s)ds+ r.

Theorem 4.2. Assume that:

(i) f ∈ C (J × R2,R) , θ ∈ C (J, J) , t ≤ θ(t), t ∈ J,

(ii) functions υ0(t) and w0(t) in C1−α(J,R) are weakly coupled lower and upper solutions of the
nonlinear BVP(1.1) such that υ0(t) ≤ w0(t) on J,

(iii) there exists nonnegative constants M, N such that function f satisfies the condition

f(t, x1, x2)− f(t, y1, y2) ≥ −M(x1 − y1)−N(x2 − y2),

for υ0(t) ≤ y1 ≤ x1 ≤ w0(t), υ0(θ(t)) ≤ y2 ≤ x2 ≤ w0(θ(t)). Then there exists monotone
sequences {υn(t)} and {wn(t)} in C1−α(J,R) such that

{υn(t)} −→ υ(t) and {wn(t)} −→ w(t) as n −→∞

where υ(t) and w(t) are minimal and maximal solutions of the nonlinear BVP(1.1), respectively
and υ(t) ≤ x(t) ≤ w(t) on J .
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Proof . We consider the following linear problem:{
Dα

0+x(t) = −Mx(t)−Nx(θ(t)) + h(t)

x(0) = −
∫ T

0
x(s)ds+ r,

(4.1)

where h(t) = f (t, η(t), η(θ(t)))−Mη(t)−Nη(θ(t)) and η ∈ C1−α(J,R).
The unique of solution of the linear problem (4.1) can be proved as in Corollary 2.2.
Define the iterates as follows:{

Dα
0+υn+1(t) = f (t, υn(t), υn(θ(t)))−M [υn+1(t)− υn(t)]−N [υn+1(θ(t))− υn(θ(t))] ,

υn+1(0) = −
∫ T

0
wn(s)ds+ r,

(4.2)

and{
Dα

0+wn+1(t) = f (t, wn(t), wn(θ(t)))−M [wn+1(t)− wn(t)]−N [wn+1(θ(t))− wn(θ(t))] ,

wn+1(0) = −
∫ T

0
υn(s)ds+ r,

(4.3)

Obviously, the above arguments imply the existence of the unique solutions υn+1(t) and wn+1(t)
for the problems (4.2), (4.3). By setting n = 0 in the problems (4.2), (4.3), we get the existence
of solutions υ1(t) and w1(t). We show that υ0(t) ≤ υ1(t) ≤ w1(t) ≤ w0(t). For this, consider
p(t) = υ1(t)− υ0(t) on J , and υ0(t) is the lower solution of the nonlinear BVP(1.1). Then

Dα
0+p(t) = Dα

0+υ1(t)−Dα
0+υ0(t)

≥ −M [υ1(t)− υ0(t)]−N [υ1(θ(t))− υ0(θ(t))]

≥ −Mp(t)−Np(θ(t)),

and

p(0) = υ1(0)− υ0(0) ≥ 0.

By Lemma 3.1, we get p(t) ≥ 0, implies that υ1(t) ≥ υ0(t) on J . Similarly, we can prove w1 ≤ w0

and υ1(t) ≤ w1(t) on J. Thus υ0(t) ≤ υ1(t) ≤ w1(t) ≤ w0(t). Assume that for some k > 1,
υk−1(t) ≤ υk(t) ≤ wk(t) ≤ wk−1(t) on J. We claim that υk(t) ≤ υk+1(t) ≤ wk+1(t) ≤ wk(t) on J. To
prove the claim, set p(t) = υk+1(t)− υk(t), we have

Dα
0+p(t) = Dα

0+υk+1(t)−Dα
0+υk(t)

≥ −M [υk+1(t)− υk(t)]−N [υk+1(θ(t))− υk(θ(t))]
≥ −Mp(t)−Np(θ(t)),

and

p(0) = υk+1(0)− υk(0) =

∫ T

0

wk(s)ds−
∫ T

0

wk−1(s)ds ≥ 0.

By Lemma 3.1, we get p(t) ≥ 0, implies that υk+1(t) ≥ υk(t) on J . Similarly, we can prove that
υk+1(t) ≤ wk+1(t) and wk+1(t) ≤ wk(t) on J . By the principle of mathematical induction, we have

υ0 ≤ υ1 ≤ υ2 ≤ · · · ≤ υk ≤ wk ≤ · · · ≤ w2 ≤ w1 ≤ w0 on J. (4.4)

Obviously, the sequences {υn(t)} and {wn(t)} are uniformly bounded. We observe that {Dα
0+υn} and

{Dα
0+wn} are uniformly bounded on J , in view of the relations (4.2) & (4.3).
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Then using Corollary 1.7, we can conclude the equicontinuous of the sequences {υn(t)}, {wn(t)}.
Hence by the Ascoli-Arzela theorem, the sequences {υn(t)} and {wn(t)} converge uniformly to υ and
w, respectively on J . Using corresponding fractional Volterra integral equations

υn+1(t) = υn+1(0) +
1

Γ(α)

∫ t

0

(t− s)α−1 [f (s, υn(s), υn(θ(s))) −

M [υn+1(s)− υn(s)]−N [υn+1(θ(s))− υn(θ(s))]] ds

wn+1(t) = wn+1(0) +
1

Γ(α)

∫ t

0

(t− s)α−1 [f (s, wn(s), wn(θ(s))) −

M [wn+1(s)− wn(s)]−N [wn+1(θ(s))− wn(θ(s))]] ds

By Lebesgue’s dominated convergence Lemma 1.5 as n −→ ∞, it follows that υ(t) and w(t) are
solutions of the linear problem (4.1).

Now, we prove that υ(t) and w(t) are the minimal and maximal solutions of nonlinear BVP(1.1).
Let x(t) be any solution of the nonlinear BVP(1.1) different from υ(t) and w(t), so that there exists
k such that υk(t) ≤ x(t) ≤ wk(t) on J . Set p(t) = x(t)− υk+1(t). we have

Dα
0+p(t) = Dα

0+x(t)−Dα
0+υk+1(t)

≥ −M [x(t)− υk+1(t)]−N [x(θ(t))− υk+1(θ(t))]

≥ −Mp(t)−Np(θ(t)),

and

p(0) = x(0)− υk+1(0) =

∫ T

0

[x(s)− wk(s)] ds ≥ 0.

By Lemma 3.1, we get p(t) ≥ 0, implies that x(t) ≥ υk+1(t) for all k on J . Similarly we can prove
x(t) ≤ wk+1(t) for all k on J . Since υ0(t) ≤ x(t) ≤ x0(t) on J . By induction it follows that
υk(t) ≤ x(t) and x(t) ≤ wk(t) for all k. Thus υk(t) ≤ x(t) ≤ wk(t) on J . Taking limit as k −→ ∞,
it follows that υ(t) ≤ x(t) ≤ w(t) on J . The functions υ(t) and w(t) are the minimal and maximal
solutions to the nonlinear BVP(1.1). The proof is complete. �

Next, we obtain the uniqueness of solutions of the nonlinear BVP(1.1) as follows:

Theorem 4.3. Assume that:

(i) all the conditions of the Theorem 4.2 hold,

(iii) there exists nonnegative constants M, N such that function f satisfies the condition

f(t, x1, x2)− f(t, y1, y2) ≤M (x1 − y1) +N (x2 − y2) ,

for υ0(t) ≤ y1 ≤ x1 ≤ w0(t), υ0(θ(t)) ≤ y2 ≤ x2 ≤ w0(θ(t)).

Then the nonlinear BVP(1.1) has a unique solution.

Proof . This can be proved as in Theorem 3.4. �
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5. An example

In the section, we illustrate our result with the following example.

Example 5.1. Consider the fractional differential equation:{
Dα

0+x(t) = f (t, x(t), x(θ(t))), t ∈ [0, 1],

x(0) = λ
∫ T

0
x(s)ds+ r,

(5.1)

where α = 1
2
, T = 1, θ(t) = tγ, 0 < γ < 1, λ = 1

4
, r = 1 and f (t, x(t), x(tγ)) = t+ t2+1

30
x(t) + t4+1

15
x(tγ).

Obviously, f (t, x(t), x(tγ)) satisfies Lipschitz condition and there exist constants M = 1
60
, N = 1

30

such that

|f(t, x1(t), x2(tγ))− f(t, y1(t), y2(tγ))| ≤ 1

60
|x1(t)− y1(t)|+ 1

30
|x2(tγ)− y2(tγ)| , for t ∈ J.

Furthermore, we find that

λ < 1− 1

20

√
π = 0.911377.

Inequality (2.1) holds. It shows that the condition (H2) of Theorem 2.1 holds, we conclude that the
problem (5.1) has a unique solution.
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