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In order to be able to study cosmic phenomena more accurately and broadly, it was necessary to expand the concept of calculus. In
this study, we aim to introduce a new fractional Hermite-Hadamard-Mercer’s inequality and its fractional integral type in-
equalities. To facilitate that, we use the proportional fractional integral operators of integrable functions with respect to another
continuous and strictly increasing function. Moreover, we establish some new fractional weighted ¢-proportional fractional
integral Hermite-Hadamard-Mercer type inequalities. Furthermore, in this article, we are keen to present some special cases
related to our current study compared to the previous work of the inequality under study.

1. Introduction

There is no doubt that a researcher in the field of calculus
knows the significant importance that fractional calculus has
acquired recently due to its multiple and important uses in
many fields in the natural sciences and technology, especially
in physics, fluid dynamics, biology, image processing,
control theory, computer networking, and signal processing.

Fractional calculus is the generalized form of classical
integrals and derivatives for the order is a noninteger, which
comes within the framework of mathematicians’ relentless
pursuit of developing mathematics to make it more general
and useable in most cases that may encounter when studying
and analyzing natural phenomena. According to this, we can
say fractional calculus has become the focus of a large
number of researchers’ attention. As a result, a lot of ex-
tensions and generalizations have appeared especially on the
classical fractional calculus like the definitions of Rie-
mann-Liouville (RL) and Caputo. Actually, the derivative
Riemann-Liouville is the most general concept and the most
uniform and natural. In general, there are numerous other

definitions of fractional operators such as Erdélyi-Kober,
Hilfer, Katugampola, Hadamard, and Riesz which are just a
few examples to make reference to [1, 2]. It should be noted
that there are many modern fractional operators proposed
by many researchers and perhaps the most prominent of
them is the recently proposed ABC operator by Atangana
and Baleanu [3, 4].

Definition 1. 'The function g: ([a,z]CR) — R is said to be
a convex function if the inequality

glnr+(1=n)s)<ng(r)+(1-n)g(s), (1)

holds for all r,s € [a,z] and 7 € [0,1]. We say that g is a
concave function if inequality (1) is reversed. In general, the
real-valued function g is said to be a convex function on
[a, z] if and only if for all y,, y,,...., ¥, € [a,z] and for any
;€ la,z],i=1,2,....,nwith Y;_{n;, = 1, we have

g(Z myi> < > m:g(y)- (2)
i=1 i=1
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This well-known inequality is called Jensen inequality
[5].

Convexity of functions with their features is one of the
most useful properties among other categories of functions
in the important fields of applied sciences, especially sta-
tistics and mathematics, which according to its own useful
definition has a geometric interpretation. Furthermore, itis a
vital part of inequalities theory and has become the leading
point for creating numerous inequalities such as Jensen’s
inequality, Hadamard’s inequality with its type inequalities,
and Steffensen’s inequality. One of these inequalities that are
closely related to the convexity of functions is the Hermi-
te-Hadamard inequality, which has a well-known area in the
space of inequalities theory. This inequality was initially
proposed by Hermite in 1881, but it did not come into
prominence until it was enriched by Hadamard in 1893 [6]
as follows:

o5 ) g Lo

gla) +g(2)
2 (3)

a,z€ R,a<z,

where g is a convex function on [g, z], which is called the
Hermite-Hadamard (H-H) inequality. Significantly, H-H
inequality recently has become the focus of attention of
several mathematicians and researchers due to its remark-
able applications and its spacious uses in several diverse
areas. Concerning that, a large number of articles have
appeared that contain extensions and generalizations of this
inequality (see [7-12]).

Lemma 1 (see [13]). Suppose that the function g: ([a,
z]CR) — R is convex on [a, z]. Then, we have

gla+z-y)<g(a)+g(z)-g(y). (4)

In general, McD Mercer in [13] proved the following
generalization of each of inequality (2) and inequality (4),
which is called the well-known Jensen-Mercer inequality.

Theorem 1. Suppose that the function g: ([a,z]<R) — R
is convex on (a,z]. Then, for all y,,y,,....,y, € [a,z] and
for any n; € [a,z], i=1,2,....,n, with Y, _\n; = 1, we have

i=

g<a+z—211iyi>Sg(a)+g(z)—zf7i9()’i)' (5)
i=1

i=1

Inequality (5) is a matter of supreme interest due to
much information and its explicit boundary conditions. In
mathematics and engineering sciences, Jensen-Mercer’s
inequality and associated inequalities have wonderful ap-
plications and their generalizations and extensions have
been an excellent topic of research for mathematicians and
authors in the past few years as seen through a variety of
investigations on the subject. Moradi and Furuichi [14]
(2020) presented some new generalizations and improve-
ments of Jensen-Mercer’s type inequalities. Khan et al. [15]
(2020) applied Jensen-Mercer’s inequality in information

theory to compute new ratings for Csiszar and related di-
vergence. For more generalizations and details of Jen-
sen—Mercer’s type inequalities, see [16-18].

Many researchers, motivated by all the above literature,
did a lot of research and were able to derive a new inequality
which is a mixture of H-H and Jensen-Mercer’s inequalities,
which was named the Hermite-Hadamard-Mercer’s in-
equality which is our focus through introducing this article.

Ogulmus and Sarikaya [19] (2019) established fractional
integral Hermite-Hadamard-Mercer’s inequalities for RL
operators.

Theorem 2. Let g: [a,z] — R be a convex function. The
following inequalities hold:

E)
g<61+-Z 2

L(B+1)

I, R
z(y_x)ﬁ{ wg+ I gl (6)

<g(a)+g(z) -

<g(a)+g(z) - g(“Ty>,

x+y

gla+z-"27)
T(B+1) ([ 4
S2()/— x)ﬂ {J{w—y}*
+Jfa+z_x},g(a +z- )} (7)

<g(a+z—y)+g(a+z—x)
N 2

gla+z—x)

g(x) +g(y)'

<g(a)+g(z) - 5

The same authors, in the same work, presented the
following inequality.

Theorem 3. Let g: [a,z] — R be a convex function. The
following inequalities hold:

Xty
g(a+z-"27)

rp+1) i B
Sz(y—x)‘g {uﬁx;y}'g(“” 2

(8)

+Jﬁ{ x+y}+g(a+z—x)
a+z—

g(x) + g(y)_

<g(a)+g(z) - 5

Iscan [20] (2020) employed the RL fractional integral to
investigate some weighted Hermite-Hadamard-Mercer’s
type inequalities as follows.
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Theorem 4. Let g: [a,z] — R be a convex differentiable
function on (a,z) and w: [a,z] — R be a nonnegative
integrable function. Then, the following inequalities hold:

g(a +z- %)Jfaﬂ_x}, w(a+z-y)

L[, 750 8
<3 {(p‘]{a+z—x}’ gw(a+z-y)+ J{aﬂiyrgw(a +z- x)]» 9)

S%[g(a+z—x)+g(a+z—y)]ff

at+z—x}~ w(a +tz2- )’)

Iscan also, in the same work, gave the following weighted
Hermite-Hadamard-Mercer’s inequality.

Theorem 5. Let g: [a,z] — R be a convex differentiable
function on (a,z) and w: [a,z] — R be a nonnegative
integrable function. Then, the following inequalities hold:

g(a +z- m)fﬂ

2 {a+z—x}’w(a+z_y)

1
siijfﬂz_x}fgw(a+z—y)+fﬁ y}+gw(a+z—x)}

{a+Z*

< (9(@) + 9@ w(y) - % { 7w+, gwin)]

xX+y

<fo@+ g2 - o(22) Aty wi.

(10)

Abdeljawad et al. [21] (2020) established some in-
equalities of Hermite—Hadamard-Mercer type inequalities
employing RL fractional integral. Butt et al. [22] (2020)
proved some Hermite-Hadamard-Mercer type inequalities
for convex functions by using the conformable fractional
integrals. Chu et al. [23] (2020) presented some general-
izations of Hermite-Hadamard-Mercer type inequalities via
Katugampola fractional integral. Recently, in 2021, Vivas-
Cortez et al. [24] used generalized RL to present some
Hermite-Hadamard-Mercer type inequalities involving
convex functions. For more recent studies and generaliza-
tions of this inequality, please see [25-28].

All of what we mentioned above prompts us to study
Hermite-Hadamard-Mercer’s inequality via the recently
generalized operators. Here, in this study, we aim to es-
tablish Hermite-Hadamard-Mercer’s inequality and its type
inequalities for convex functions employing proportional
fractional integral operators involving continuous strictly
increasing functions. We also aim to present some fractional
weighted Hermite-Hadamard-Mercer type inequalities via
the current generalized integral operators. Along with this
study, we are able to discuss some special cases and some
relationships between our current study and previous
studies.

The organization of this research paper will be as follows:
In Section 2, we will mention some notations, definitions,
and preparatory acquaintance which are used in this work.
Section 3 is devoted to the first part of our major results
which contain Hermite-Hadamard-Mercer’s inequalities.

Throughout Section 4, we provide the fractional weighted
Hermite-Hadamard-Mercer’s type inequalities.

2. Essential Preliminaries

Here, we characterize some of the basic properties and some
definitions of several elementary fractional integral opera-
tors which include the final generalized fractional operator
we used to obtain and discuss our new results.

Definition 2 (see [1]). Suppose that the function g is inte-
grable on [a,z] and a>0. Then, for all 8> 0, we have

.90 = %ﬁ) [ o-wrtgwdnusa an
7P L r p-1
Z’g(y)_ﬁ/g)L(”_y) g(wdu, y <z, (12)

where T'(f) = f(o)o e *xP~1dx is the Gamma function and
7°.9(y) =.7% g(y) = g(»). The notations 7%, g(y) and
I g(y) are called, respectively, the left- and right-sided
Riemann-Liouville fractional integrals of a function g for
the order S.

Definition 3 (see [1, 2]). Suppose that the function g is
integrable on the interval f, and let ¢ be an increasing
function, where ¢ (y) € C'(F,R) such that ¢'(y)+#0 and
y € F. Then, for all $>0, we have

9759y :%ﬂ) Jy 9 Wlp() - W' g(w)du, (13)

B _ 1 z -~ B-1
07290 = g5 | 9 WIp@ -~ gau
(14

The notations (pfl;g(y) and 9.7 g(y) are, respec-
tively, called the left- and right-sided ¢-Riemann-Liouville
fractional integrals of a function g for the order .

Definition 4 (see [29]). For the function g, let § >0, and we
have for all f € C and Re(f) >0,

(DB g) () = D™ 71 g (y)

ol y o [8-1
_ y - T (y-— 15
8m7ﬁl"(m—[)’) L exp[ 5 (y 14)} (15)

Ay -w" g (wdu,

(DEg)(y) = yD™ 77 05 ()

yDy* 2 [6 -1 ]
I ot S =Ll ae
8" PT (m - p) Jy P75 (=)

(- y)" P g (wydu,

where
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D™ =D°D’ ... D%, m=

m—times

[Re(B)] + 1, (17)

(yD°9) (») = (1= 8)g(y) - 89 (), yD™
=yD)D° ... yD’ . (18)

m—times

The notations (D g) (y) and (Dﬂ g) (y) are, respec-
tively, called the left- and right-sided proportional fractional
derivatives of a function g for the order .

Definition 5 (see [29]). For the integrable function g, let
0> 0, and we have for all $ € C and Re(f8) >0,

8,6 y 6-1
(79)0)= g [ | 5t -]

(y - wf g (wdu,

(19)

(75%9) ()

= 1 r ex [E (u— )]
Frp ), TLe T (20)
(u—- y)ﬁ_lg(u)du.

The notations (Jg’fsg) (») and (szj’fig)( y) are, respec-
tively, called the left- and right-sided proportional fractional
integrals of a function g for the order f.

Definition 6 (see [30]). For the integrable function g and for
the strictly increasing continuous function ¢ on [a, z], let
& € (0, 1], and we have for all f € C and Re(f5) >0,

oDty [s-1
) 6’"*’3r(:n ) J eXP[T (9() ~ ()
(@ () - o)™ e (g (w)du,
(21)

(9DE%g) (y)=9D™% 7705 (y)

(PDm,S
_Lrex [E( W) - o (y))
_am"ﬁl“(m—ﬂ) , p 5 ¢ ey
pw) - ()" F e (g (w)du,
(22)
where
D™ = DD’ ... oD’ ,m = [Re(B)] +1, (23)

m—times

(q)D‘Sg)(y)=(1—5)g(y)_8gl(y)’SDDW;
v ¢ (y) y
- pepd  "pd (24)
Y v y

m~—times

The notations (gng’ng) (y) and (¢D§16g) (y) are, re-
spectively, called the left- and right-sided proportional
fractional derivatives of a function g with respect to ¢ for the
order f3.

Definition 7 (see [30]). For the integrable function g and for
the continuous and strictly increasing function ¢ on [a, z],
let § € (0, 1], and we have for all f € C and Re(f5) >0,

1 Y 0-1
075°9) () = exp[— (9() —q)(u))]
( ) 8T (B) J a S (25)
(90 — o) 9 (w)g (w)du,
1 z 0-1
((pffv_%)()/) = PP Jy exp[T (¢ (u) - (p(y))]
(o) — () 19 (w)g (w)du.
(26)

The notations (gofg’fsg) (y) and ((pff:%)( y) are, re-
spectively, called the left- and right-sided proportional
fractional integrals of a function g with respect to ¢ for the
order f3.

Lemma 2 (see [30]). Let ¢ be a continuous function on y > a.
If § € (0,1] and Re(a),Re(f5) >0, we have

9 IE(9 7% ) () = 9.7 (9780 g) ()

( Jﬂﬂx& )( ) (27)
Y

075 (972°9) (») = 955 (9720 9) () o)
( jﬁﬂxé )(y)

Lemma 3 (see [30]). Let ¢ be an integrable function defined
on [a,y] and §>a. If 0<m < [Re(P)] + 1, then we have

oD (975 9) () = (975 ) (3, (29)
D975 9) () = (95 9) (. (30)

In this paper, we need the following identity as in [31].

Let § € (0,1], B € C, Re(f8) =20, and ¢ be a strictly in-
creasing continuous function. Then, for any constant k, we
have

(075 () = @D P

3
Frp+1) Gy
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3. Fractional Hermite-Hadamard—Mercer
Inequalities Involving ¢-Proportional
Fractional Integrals

This section is the first part of our main contributions. Here,
we  present  basic  generalization in  Hermi-
te-Hadamard-Mercer’s inequalities which involve convex
functions for generalized proportional fractional integral

operators concerning another strictly increasing continuous
function.

Theorem 6. Let ¢: F — [a,z]CR, with 0<a<z, be a
continuous strictly increasing function and g: [a,z] — R be
a convex differentiable function on (a,z) satisfying that
(g°9): F — R is an integrable mapping on f. Then, we have

Xty
g(a+z 5 >
FT(B+1) 5.6 N 5.6 N
PN o1 (O o () 32
<9 +g(2) 2y x)/s{ Ty @O0 D) + o7 - (00 (x))} (32)
+
<g(a)+g(2) - g(%),
xX+y
g(a+z 5 )
5ﬁr(ﬁ+1){ 85 C
<S——— eI, N (a+z-x)
2(y - x)f P71 vy} (g9)9 ) (33)
+¢Jl{gj7] (a+z-x)} (gD(P)((P_l (a+z- )/))}
at+z-y)+gla+z—-x x) +
L9 y)zg( )Sg(a)+g(z)_g( )zg(y)'
Proof. According to the Jensen-Mercer inequality and for ~ which leads to
r,s € [a, z], we have
o (N +9() olare-"37) 5@+
g<a+z—m)sg(a) +9(2) —w. (34) (36)
2 2 _gpx +(L-my) + g (1 - n)x +1ny)
Now, we change the variables r and s with » = x + (1 —7) 2
yand s = (1-n)x+ny, and we get On both sides of (36), taking product by

a+z_;7x+(1—;1)y+(1—11)x+;1y
g 2

glnx+ (1 —n)y)+g(1-n)x+ny)
5 ,

<gla)+g(z) -
(35)

0

1 —
<[ 9@ +g exp[%n(y—x)]n"‘ldn
0

exp[8 - 1/6n(y — x)]##"! and then integrating the esti-
mating inequality with respect to # over [0, 1], we obtain

1 X+ 6-1 _
Joolar=- zy)exp[T”‘y‘x)]”ﬁ K

(37)

2

- j;exp[(sgl’?(y—x)] Al Sl —n)x+ny)’7,;,1d’1_

Using identity (31) on both sides of (37), we obtain
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x+ y) Next,

2 1 o0-1
B[g(a) +9g(2)] - OeXP[TU()/—x)]

g+ (1= n)y)dn

1 5—
i J eXP[TIW(y‘x)]nﬁ'lg((l —mx +ny)dn.
0
(38)

Frp+1)

- B.6 o _
2(}1 _ x)ﬁ { j{q, l(x)} (g (P)( 1()’)) + QDJ{(F,I(),)}* (g (P)(¢ l(x))}

___ B o [8-1 o ,
2y-xf “qrwx) eXP[(S (- (P(”))] (y=ow)™ (g ¢)(We' (w)du

0 [8- .
+J(P y) eXP[(Sl (p(v) - x)] (9(») = x) 1 (g 9) ()¢’ (V)dV} (39)

¢ (x

Blw s y=ow)"'
Sl e S ICRL
o () S—1 o(v)—x 1 o @' (v)
+J¢1(X)6XP[T (¢(V)—x)]<)/_4x> (g ‘P)(V)y_xd" :

Putting ¢ (u) = nx + (1 —n)yand o (v) = (1 —)x + 1y,
we get

<p()

Frp+1)

9@ +9@ - {W{ o (GO0 D) 0T () (x))}

1 _
= g(a)+g(z)—§“ eXP[(STln(y—X)]nﬁ”g(nH(l —m)y)dn
0

(40)
1 6 - 1 ﬂ*l
+ Joexp Tn(y—x) n g (1 =mx+ny)dn
_x+y
= g(a +z > )
This proves the first inequality in (32). To prove the second x4 (nx +(1=m)y) + g((1 = n)x +1y)
inequality and by using the convexity of g, we can be certain that ( 5 y) < I L 5 g CAARALS n € [0,1].
o o (42)
g<<p(u);<p(w)£ (9 <p)(u)2+(g LS

On both sides of (42), taking product by
Then, for ¢(u) =nx+ (1-n)y and ¢(v) = (1 —n)x + 1y, exp[6 - 1/6n(y — x)]nP~! and then integrating the esti-
we have mating inequality with respect to 5 over [0, 1], we get
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! §-1 _
R e

! d-1
+JO exp[Tn(y—x)]nﬁ

_¥rp+1
2(y - x)f

Therefore, we have

o)

SRR

° -1
2(y - x)ﬁ{ j{ga wy (9 9)(e' ) (44)

+o Iy (99)(97 (x))}-

On both sides of inequality (44), adding g (a) + g (z), we
get the second inequality in (32). Hence, desired inequality
(32) is thus proved. We now give the proof of inequalities in
(33). We have, according to the convexity of the function g,
for all r,s € [a, z], that

<a+z_7'+5>_ <a+z—r+a+z—s>
9 2 )79 2

(45)
S%{g(a+z—r)+g(a+z—s)}.

xX+y

g(a+z—

{W(p vy (G997 ) + 97

g ((1-mx+ ny)dn} (43)

[{;f—l (,V)}? (gD(P)(¢7l (X))}

By applying the change of variables a+z -r=7#(a+
z-x)+(1-n(a+z-y) and a+z-s=nla+z-y)+
(1-#)(a+z—-x), we obtain

1
g( x;y)si{g(n(a+z—x)+(l—11)(a+z—y))

+g(na+z-y)+(Q-n)(a+z-x)}
(46)
On both sides of (46), taking product by

exp[6 - 1/8n(y — x)]#~' and then integrating the esti-
mating inequality with respect to 7 over [0, 1], we obtain

1 6_
: )s/;{Joexp[le—x)]nﬂ*g[n(a+z—x>+<1 —(a+z—y)ldn

(47)

1 _
+Joexp[afsln(y—x)]qﬂ_lg[q(a+z—y) +(1 —ﬂ)(a+z—x)]d11}.

Next,

Frp+1
2(y- x)f

_ /3 {J"P’ (a+z-x) exp[g%sl (atzx)—

2(y - x)ﬁ ¢ (a+z-y)

@ !(a+z-x)

1 (a+z—y)

ﬁ ! (a+z— x) -1
E ¢ (a+z— y) 6

¢ (atz—x)

~ 1 (a+z—y)

({a+z—x}—¢(u))]<{

exp[— (p(v) — {a+z—y})]<¢( )

{078 ey GO0 @rz=x) v 90 (G0 @rz =)}
(p(u))] Ha+z-x} -9 ' (g'9) We' (w)du

exp[ -1 (p(v)-{a+z- y})] (p(v)-{a+z- y} (g ?)(v)g' (v)dv} (48)

a+z-—x}—

o\ . o' (1)
Y- x ) (g ¢)(”)yjdﬂ

y—-Xx

_ _ p-1 /
v -{a+z y}> (g°¢)(v)z_(12dv}~
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Putting ¢(u)=x(a+z-y)+ (1-n)(a+z-x) and
o) =nla+z-x)+ (1 -n)(a+z-y), we get

Fr(p+1) : . : .
20— oF {(Pf‘{if,l ey @O0 @rz=0) 4900 o (do) 9 @tz )}
1 _
=g“(}exp[¥q(y—x)]qﬁ—lg[q(au—x)+(1 - (a+z-y)dny
(49)

1 S—
+J exp[Tlrl(y—x)]qﬁ1g[11(a+z—y)+(l—;7)(a+z—x)]d;1}>

_x+y>
2g<a+z 5 )

This completes the proof of the first inequality in (33). To
prove the second inequality and by using the convexity of g,

we can be certain that

gma+z-x)+(1-na+z-y)<ngla+z-x)+(1-ngla+z-y), (50)
glna+z-y)+(1-na+z-x)<ngla+z-y)+(1 -n)g(a+z-x). (51)
Adding inequalities (50) and (51), we obtain
glna+z-x)+(1-na+z-y)]+glnla+z-y)+(1-n(a+z-x)] (52)
<gla+z-y)+gla+z-x)<2[g(a)+g(2)]-[g(x)+g»]
On both sides of (52), taking product by
exp[6 - 1/8n(y — x)]#P~! and then integrating the esti-
mating inequality with respect to # over [0, 1], we obtain
Jl §-1 B-1
0exp Tn(y—x) o glma+z-—x)+(1-n)(a+z-y)ldy
1 6-1 -1
+J exp Tn(y—x) W oglma+z-—y)+(Q-n)(a+z-x)ldy
(53)
<l (a+z- )+l (a+z-x)
_ﬁg Yy ﬁg
<21g(@+g(@)] -~ [g(x) +g(y)]
=B g g B g gyl

On the left-hand side in (53), applying the same argu-

ments as above, we obtain
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B
I} F(/3 + lﬂ) { jﬁ’ail
2(y - x) {o t@rz—y)

Sg(a+z—y)erg(a+z—x)gg(a)+g(

which is the second and third inequalities in (33). Hence, the
desired inequalities in (33) are thus proved. O

Remark 1

The proportional fractional integral version of Theorem
6 was provided by K. Yildirim and S. Yildirim in [32].

@09 @rz=m) 4t L (@9 @rz- )}

(54)

Z)_g(x)+g(y)’

2

If we put § =1, in Theorem 6, we obtain its ¢-Rie-
mann-Liouville fractional integral version, which was
proved by Butt et al. in [33].

Fixing 6§ =1 and ¢(x) =x in Theorem 6 for all
x € [a,z], it gives

X+y rp+1)
g<a+z— 2 )Sg(a)+g(z)—m{fg+g(y)+fﬁ_g(x)}
(55)
x+y
Sg(a)+g(2)—g(T),
r 1
g(’”z _x;y> Sz((yﬁ—+x))/3 {lem—y)*g(“ +2=X) 4 T 9@tz _y)} (56)
Sg(a+z—y)-zkg(a+z—x)sg(a)+g(z)_g(x)-zkg(y).

This was proved by Ogulmus and Sarikaya in [19].

Fixing § = 1, f = 1, and ¢ (x) = x in Theorem 6 for all
x € [a,z], it gives

1
g(avz-"22)cg@+ 9~ | g+ -nydn
<g(@+g(2)-o(*32),
(57)
EAPAVER. Jy _
g(a+z 5 )Sy—x xg(a+z ndn
sg(@ﬂﬂ@—M-
(58)
g(a+z—x;y)
SM jﬁ’a
2(y - x)f
+(p]ﬁ’5
<g(a)+ g(z)- I 19D

2

This was given by Kian and Moslehian in [34].

Theorem 7. Let ¢: F — [a,z]<R, with 0<a<z, be a
continuous strictly increasing function and g: [a,z] — R be
a convex differentiable function on (a,z) satisfying that
(9°9): F — R is an integrable mapping on f. Then, we have

xry\ @O (@+z-y)
B

(59)

.t +(g°(p)(<p'l(a+z—x))
sy



10 International Journal of Mathematics and Mathematical Sciences

Proof. According to the convexity of the function g for all 1 xX+y
r,s € [a,z], we have ﬁg<a+z— P )
g<a+z r+s> g<a+z—r+a+z—s>
—_— ) = 1 8_1 ﬁ—l
2 2 Teoy— o l(!
(60) Sjoe"p[ 5 27 ’”](z)
1
Si{g(a+z—r)+g(a+z—s)}. -
g(a +z —(ﬂx + ny))dr/ (62)
Putting r = #/2x + 2 —n/2y and s =2 - n/2x + y/2y, it 2 2
follows, for all #,s € [a,z] and 7 € [0, 1], that 1 8 -1
x+y\_1 n..2-1 +J eXp[ glg(y_x)]G)
_ l (X 0
g<a+z 2 )Sz{g(‘”z (2“ 2 y))
2 -
2-n 1 ~g<a+z—<—qx+ﬁy>>df1.
+g(a+z—( 5 x+5y)>}. 2 2

Next,
On both sides of (61), taking product by

exp[8—1/6n/2(y — x)] (/2)P! and then integrating the
estimating inequality with respect to  over [0, 1], we obtain

STy o0 o)

X+
"2 (y/i x)f { ngy) ’ ) o {6%31 (pw) {a+z- y})] () ~fa+z -y (g"9) W' (w)du
! (a+z—x) §— i ,
+J¢1( x+y) exp[Tl ({a+z—x}—<p(v))]({a+z—x}—(p(v))/3’l(g ¢) (Vg (v)dv]» (63)
o\ atz—
2

¢~ (a+z—y) y—-x

“’71(“+Z‘x;y> 6-1 o) —{a+z-y} L o' (u)
2| exp| 5 (g —farz =y | ) ()@ e

¢ ' (a+tz—x) S—1 o 1 0 )
R =

Putting ow)=a+z—- (n2x+2-n/2y) and
¢(v) =a+z - (2-n/2x +n/2y), we obtain

iﬂ(l;/(f -;)lﬁ) {(Pji’il(wz‘ : ; y)}i (gO(P)((p—l e y)) ' (pjlj[,(;l(uﬂ t y)}+ (gO(p)((P_l o x)) }

IR e (6 R RN ) (61
R ) ) R R C )

x+y
2g(a+z > )
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This proves the first inequality in (59). To prove the
second inequality and by using the Jensen-Mercer in-
equality, we can be certain that

n.o.2-1

g<a+z—<§x+7y>>Sg(a)+g(z) —<gg(x) +2_Tﬂg(y)>,

g(a+z—<2_T’7x+gy)>§g(a)+g(z)—(¥g(x) +gg(}/)>~

Adding inequalities (65) and (66), we get

(xe ) elor (5 ))
g<a+z (2x+ I REAGRE S Xty

<2[g(a) +g(2)] -[g(x) + g(¥)].

(67)

(65)

(66)

On both sides of (67), taking product by
exp[8 - 1/8n/2(y — x)] (7/2)P"" and then integrating the
estimating inequality with respect to 7 over [0, 1], we obtain

ﬂ{J; exp[(S_Tl g (y —x)](%)ﬁ_lg<a+z —<gx+¥y>>d11

o017 m\F! 2-n_ .1 (68)
* Joe"l’[ 5 5”"”](5) olarz-(5 w0 ]y))an
1
<g@+g(2) -2 [g(x)+g ().
By comparing the left-hand side of inequality (64) with
the left-hand side of inequality (68), we can deduce
FTB+1) [ _ps . o B o v/
2 (y _ x)ﬁ { {97 (a+z—x+y/2)} (g (P)(¢ (@+z- y))+ j{qu (a+z-x+y/2)}" (g (P)(q) (a+z- X))}
(69)
x) +
<g(@)+g(z) -2 *TID)

2

which is the second inequality in (59). The proof is thus
completed. O

4. Weighted Fractional
Hermite-Hadamard-Mercer Inequalities
Involving ¢-Proportional
Fractional Integrals

This section is the second part of our main contributions,
within  which we give the fractional weighted

Hermite-Hadamar-Mercer’s inequalities which involve
convex functions for generalized proportional fractional
integral operators concerning another strictly increasing
continuous function.

Theorem 8. Let ¢: F — [a,z]CR, with 0<a<z, be a
continuous strictly increasing function, g: [a,z] — R be a
convex differentiable function on (a, z), and w: [a,z] — R
be a nonnegative integrable function satisfying that
(g°9), (W¢): F — R are integrable mappings on . Then,
we have
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g<a e %)go l{gf'] (atz-x)} (w°¢)(q)7 1 (a+z- )’))

1 . ) )
SE {q)jl{;’(/il (atz-x)} (g (P) (w ¢)(¢ ! (a+z- }’))

ﬂ,(s ° o -1
T ey (GO (W) 9 (a+ 2 x))} (70)
1 8.0 o -1
<Slglatz-x)+gla+tz-I'T . - Wo)(y  (a+z-y)
g +ag)? _pe o Nf -1
< <|g(a) +9(z) - s j{(p“(rﬁz—x)}_ (w (p)(go (a+z- y)).
Proof. According to the convexity of the function g on
[a, z], we have
X+ 1
g<a+z—Ty) =g<5 (@+z-(px+(l-my)+a+z—(qy+(1 —q)x)))
(71)
<g(a+z—(11x+(1—11)y))+g(a+z—(17y+(l—ry)x))
< 5 :
On both sides of (71), taking productby h(a + z — (nx +
(1-7)y)) and then integrating the estimating inequality
with respect to 5 over [0, 1], we obtain
1
g<a+z—¥)J h(a+z—-(nx+(1-n)y)dn
0
(72)

<

1
%{Jog(a+z—(ﬂx+(l —myNh(a+z—-(nx+(1-n)y)dny

1
+J0g(a+z—(f1y+(1 —mxNh(a+z—-(gx+(1 —n)y))dn}.

p(u)=a+z- (ny+ (1-1n)x), to the second integration

Applying  the change of variables ¢ (u)=
on the right-hand side, we get

a+z— (nx+ (1—1n)y), to each of the left-hand side and the
first integration in (72) and applying the changeof variables

xX+y ¢! (a+z—x) s (P’ (Ll)
5 >J (hgo)(u)—y_xdu

a+z-—
g( ¢~ (a+z-y)

1
<-
2

¢ (a+z—x) . . q)/ (u)
{Jq)‘ (a+z-y) (g (P) ) (h (P) () y—Xx du

(p—l (a+z—x) . q), (u)
+ L}_] - (g9)Wha+z)-(x+y+ ¢(u)))yjdu}'
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Choosing then (73) leads to

(Ho)(u) = (S,;rl(ﬁ)eXp[égl (p(u)—{a+z- y})]

(74)
o) ~{a+z-yP (W'e) w),
1 (p o —
ra(are G2 Ay WO e a2 )
1 . . _
“2(-x {(pj?;f-‘ (w0} (9 9) (W 9)(9 ' (a+z-y) (75)
v (GO e @ rz-x)l,

which proves the first inequality in (70). To prove the second
inequality, by using the convexity of g, we have

gla+z-mx+(1-ny)=gna+z-x)+(1-n)(a+z-y))

(76)
<ngla+z-x)+(1-ngla+z-y),
gla+z-(ny+Q-mx)=gna+z-y)+(1-n)(a+z-x)) 77)
<ygla+z—-y)+(1-ng(a+z-x).
Adding inequalities (76) and (77), we obtain On both sides of (78), taking product by 1/2h(a + z -

(nx+ (1 —7)y)) and then integrating the estimating in-

glatz—(x+1-my)+gla+z=(ny+{1-nx) equality with respect to # over [0, 1], we obtain

<gla+z-x)+gla+z-y).
(78)

1 1
E{J-Og(a+z—(r/x+(l -myNh(a+z-(nx+1-n)y)dy
1
+ JO gla+tz-(ny+(Q-nx)h(a+z—-(nx+(1- q)y))dq} (79)
1 1
SE Jo[g(a+z—x) +glat+z-y)lh(a+z—-(nx+(1-n)y)dn.
Applying the change of variables  variables ¢ (u) =a+z— (nx+ (1 —1n)y), to the first inte-

¢(u) =a+z- (ny + (1 - n)x), to the second integration in gration on left-hand side and to the right-hand side, then we
the left-hand side of (79) and applying the change of  obtain
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_
2(y - x)

{¢j§f‘l (a+z-x)} (g°¢) (woq’)((pf "a+z- y))

+¢j§£1 (a+z*}’)}+ (go(p) (wnq))(q)_l (a+z- x))} (80)

1
<
2(y-x)

and the second inequality is thus proved. To prove the third
inequality in (70), by using the convexity of g and Lemma 1,
we have

gla+z-x)<g(a)+g(z) - g(x), (81)

gla+z-y)<g(a)+g(z)—g(y). (82)
Adding inequalities (81) and (82), we get

-g(x)-gy).
(83)

gla+tz-x)+gla+z-y)<2[g(a)+g(2)]

On both sides of (83), taking product by
1/2h(a+z— (nx+ (1 —n)y)), integrating the estimating
inequality with respect to 7 over [0, 1], and then applying the
changing of variables ¢ (1) = a +z — (yx + (1 —7)y), we get

gla+z-x)+gla+z-y) rf'(ﬂ*zfﬂ

. ¢’ (u)
5 (h o) (u) ﬁdu

[g(a+Z—X)+g(a+z—)’)]¢j?£1(u+z 0} (wD‘P)(‘P

“at+z-y),

By choosing

() (W) = e

6-1
) XP[T (p(u) —{fa+z-y})

(85)
(o) ~{a+z -y (we) (),

we can reach the third desired inequality in (70). Hence, the
proof is thus completed. O O

Corollary 1. Let ¢: f — [a,z]CR, with 0<a<z, be a
continuous strictly increasing function, g: [a,z] — R be a
convex differentiable function on (a, z), and w: [a,z] — R
be a nonnegative integrable function satisfying that
(g°9), (W): F — R are integrable mappings on . Then,
we have

¢! (atz—y)
¢! (a+tz—x) . /
<lo@ 9@ - 2O IO " T )
(84)
x+ y\? o _
g<a+z— 2y> j?f’l(a+zfy)}+ (w (p)(go 1(a+z—x))
<1070 ey (TN (@2 -0)
o 7Pt ()(0)( Na+z- ))}
¢ (o1 (@rz-n)} ge)\we)e (a y (86)

[(a+z x)+gla+z- y)](”f

{q: a+z—y)}

(w'o)(e

_1(a+z—x))

{g(a) +g(z) - M} J{q) P— L(wo)(9 (a+z-x)).

2

Proof. This corollary can be easily demonstrated by fol-
lowing the proof of Theorem 8, taking

)
(h ‘P)() 5ﬂ (ﬁ) P[T(

1 {a+z—-x}-

<p(u))] {a+z-x} -9 (W) w). (87)
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Remark 2. By adding inequalities (70) and (86), we can
derive the following inequality:

a2 SN0 ey @O 02 )

B.6
+(Pj{<p" (u+z—y)}*

S(p]ﬁ"s

(wogo)((p_1 (a+z- x))}

¢ (a+rz—x)} (go(/’) (woq’)((p71 (a+z- }’))

+ q)Jl{g;jﬂ (a+z,y)}+ (gD(P) (woq))(qfl (a+z- x))

1 o _
SE [gla+z-x)+gla+z —y)]{(p]?f,l(mzix)}f (w gv)((p “a+z —y))

ixy
+¢J{qf‘ (a+z—y)}*
S{g(mg(z)_w}{

B0
+(PJ{¢" (aJrz—y)}Jr

Remark 3

Putting & = 1, we obtain the proportional fractional
integral version of each of Theorem 8, Corollary 1, and
inequality (88) with respect to the positive increasing
function ¢

By taking ¢(x) = x, for all x € [a,z], we obtain the
proportional fractional integral version for each of
Theorem 8, Corollary 1, and inequality (88)

If we put § =1 and ¢(x) =x, for all x € [a,z], we
obtain inequality (9), for Riemann-Liouville fractional
integral introduced by Iscan [20]

Putting § = 1 and ¢ (x) = x, for all x € [a, z], and if we
choose x = aand y = z, we get the following inequality:

_X+y>‘P B0
g<a+z )

1

{(p" (a+z—x)}7

(88)

(w"q))((p’l (a+z- x))}
(pjf{;f"(mzfx)}’ (7“UQ(P)((P71 (a+z- y))

(wu<p)((p_1 (a+z- x))}.

o)A w@ + S} < gw(@ + g (@)
SM {jﬁ,w(a) + Jsuu(z)},

(89)

which was introduced by Iscan [35]

The next result is as follows.

Theorem 9. Let ¢: F — [a,z]<R, with 0<a<z, be a
continuous strictly increasing function, g: [a,z] — R be a
convex differentiable function on (a, z), and w: [a,z] — R
be a nonnegative integrable function satisfying that
(9°9), (W¢): F — R are integrable mappings on . Then,
we have

Wo)(¢ ' (a+z-y))

=3 {(Pj{{gf-l (a+z-x)} (g9)(Wo)(o '(a+z-y)

+(le{;f" (a+z-y)}" (g"q)) (woﬂo)(?’il (a+z- x))}

<@+ 9@, @) 9 ) (90)

1

"2 {W’Ef,, oy (99 @e)(e' ()

wjl{;f-' oy @) e (x))}

Xty

S{g(a) +g(z)—g<—

2

9 C
f’f;f,l(x)y W'o)(o™ ).
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Proof. The first inequality in (90) is already proved in
Theorem 8. To prove the second inequality, we have by
Lemma (1) according to the convexity of the function g on
[a, z] what follows

(nx+(1=ny)<g(a)+g(z) - gnx+1-ny),
(91)

gla+z-

gla+z—-(ny+1Q-n)x))<g(a)+g(z)

(92)
-g(ny +(1-nx).

Adding inequalities (91) and (92), we get

¢~ (a+z-y

(a+z—x)
+ J.(P (g ¢)(wh(2(a+z)

¢~ (a+z—-y)
-1 ¢

<(g@+g@) |
4

-1

1{J¢ 60
2o

(g'9)Wh(a+z-g(u ))

gla+z-(nx+(1-ny))+gla+z-(ny+(1-1nx))
<2g(a)+2g9(z) —{gnx+ (1 =n)y) + glny + (1 - nx)}
(93)

On both sides of (93), taking product by
1/2h(a+z - (nx+ (1 —1n)y)), integrating the estimating
inequality with respect to  over [0, 1], and then applying the
change of variables ¢(u) =a+z— (yx+ (1 —17)y), to the
left-hand side, and applying the change of variables
¢ (u) = nx + (1 —1n)y, to the right-hand side, we get

1 ¢! (a+z—x) . . /
2“ (g so)@)if’“ﬁdu

90() }

" e+ z- o) dau (94)
(x) y

- X

<p()

() ,

Choosing

. 1 0-1
h = P - -
= G0 [ g (el y})] (95)

(o) ~fa+z -y (W) w),

1 8,6
2 (y - x) {q)J{fl”l (u+z—x)}

then (94) leads to

(go)(Wo)(p (atz-y)

90 (O @) p @ vz )}

{(p (a+z-y

(g(a) +9(2))?
y X

IR
2(y - x)

ooy WO ) (96)

{q)j?f*(x)}* (g9) (@ )(o ()

w90y (GO (W) (e (x))},
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which proves the second inequality in (90). To prove the last 1
inequality, by using the convexity of g, we have, for all ga)+g(z) - 2 {g e+ (L=my) + g(ny + (1 -n)x)}
x,y € la,z],

xX+y
g<x + y> B g( (mx+(1-ny)+(ny+(1- 11)x)> <g(a)+g(z) - g<_2 )

2 2 (98)

(97)
1 On both sides of (98), taking productby h(a + z — (nx +
SEg(l//x +(=my)+glny +(1-n)x), (1-7%)y)) and integrating the estimating inequality with

. . respect to # over [0, 1],
which can be rewritten as

1
[g(a) + g(2)] Joh(a +z-(nx+(1-n)y)dy

1
_%{Jog(qx+(1 -myh(a+z—-(mx+(1-n)y)dy

(99)
1
# | g+ (L= mhtaz - O+ (L= )y
n 1
< {g(a) +9g(z) - g<x2—y>}- Io h(a+z—-(nx+(1-n)y))dn.
Applying the change of variables  applying the same process to the left-hand side as above, we
o) =a+z- (gx+ (1 -1n)y), to the right-hand side and  get
(g(a) +g(2)? _po N
5 Tx Ty W'o)(e' )
1 B0 o 0 -1
—m{%ﬂwmy (g9)wo)(e ()
(100)

900y (9 @) o ()]

cJos 0oL oy 0l 0

which proves the last inequality in (90). Hence, the proof is Corollary 2. Let ¢: f — [a,z]<R, with 0<a<z, be a
thus completed. O continuous strictly increasing function, g: |a,z] — R be a
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convex differentiable function on (a, z), and w: [a,z] — R (g°9), (W9): F — R are integrable mappings on . Then,
be a mnonnegative integrable function satisfying that  we have

x+ y\? o _
g(a+z— 2}/) Jf{j;il(mszr (w go)(q) 1(a+z—x))

1 i i )
=2 {(Pj/{gf* ey (9 9) (@ 9)(9  (a+z-y))

+¢jl{;;;—1 (a+z_y)}+ (9090) (wo¢)(¢_l (a rz_ x))}

<(g@+g @)\ T ) We)(o () (101)
1 e
et L @O W e )
9Ty T @) o )}
20 aED Ay Wl o)

Proof. This corollary can be easily demonstrated by fol-  Remark 4. By adding inequalities (90) and (101), we can
lowing the proof of Theorem 9, taking derive the following inequality:

o 1 5-1
(ho)(u) = —eXP[— (la+z-x}- q)(u))]
8T (B) 4 (102)

-(fa+z-x} —(p(u))ﬂ_l(woq)) (). -

g<a e X+Ty>{q)jl{;f’l (a+z—x)}" (wo(P)(q)_l (a+z- )/))

+(Pj[{;:’s" (a+z-p)}" (w°<P)(<P_ Ya+z- x))}

1P ey T @O0 @ 42-2)
B,0
+(Pj{so"(

ey (TO) @97 (@42 -0} (103)

=lglar g(z)){q’jﬁfﬂ o @99 00) + 97 ) (Wo)(o! (x))}
- {Wf;f,l o (TOW(0 ) +o7p 1 (0) (We)(o™" (x))}

xX+y

cfot0 0o 6 )91 )

Remark 5 By taking ¢(x) = x, for all x € [a,z], we obtain the
proportional fractional integral version for each of

Putting § = 1, we obtain the proportional fractional Theorem 9, Corollary 2, and inequality (103).
%ntegraloversion of‘each of Theorem 9, C'o'roll'ary 2, a.nd If we put =1 and ¢(x) = x, for all x € [a,2], we
inequality (103) with respect to the positive increasing obtain inequality (10), for Riemann-Liouville fractional

function ¢ integral introduced by Iscan [20].
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5. Conclusion

In view of the significant importance recently achieved by
fractional calculus and its very important applications in the
interpretation and modeling of natural phenomena, it has
become necessary to develop and refine our capabilities to
generalize some of the recent results related to this topic. We
achieved our goals of introducing a new fractional Her-
mite-Hadamard-Mercer’s inequality and its fractional in-
tegral type inequalities by employing the proportional
fractional operators of integrable functions with respect to
another continuous and strictly increasing function. We
enhanced our work by establishing some new fractional
weighted  ¢-proportional fractional integral Hermi-
te-Hadamard-Mercer type inequalities. Also, in this article,
we were keen to present some special cases related to our
current study compared to the previous work of the in-
equality under study. In future work, we recommend re-
searchers study the current inequality via recent fractional
operators such as the Atangana+ Baleanu operator or
Caputo + Fabrizio operator.
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