

AKCE International Journal of Graphs and Combinatorics

Volume 16, Issue 1, April 2019, Pages 18-26

Some properties of 2-absorbing primary ideals in lattices

Meenakshi P. Wasadikar 🖂 , Karuna T. Gaikwad 🙇 🖂	
Show more 🗸	
■ Outline	
https://doi.org/10.1016/j.akcej.2018.01.015 א	
Under a Creative Commons license ↗	open acces

Abstract

We introduce the concepts of a primary and a 2-absorbing primary ideal and the radical of an ideal in a <u>lattice</u>. We study some properties of these ideals. A characterization for the radical of an ideal to be a primary ideal is given. Also a characterization for an ideal *I* to be a 2-absorbing primary ideal is proved. Examples and <u>counter examples</u> are given wherever necessary.

Keywords

Ideal; Prime ideal; Primary ideal; 2-absorbing ideal; 2-absorbing primary ideal

1. Introduction

Typesetting math: 26% the concept of a 2-absorbing ideal in a <u>commutative ring</u>. A proper ideal I of a commutative ring R is said to be a 2-absorbing ideal, if whenever $a, b, c \in R$,

 $abc \in I$, then either $ab \in I$ or $ac \in I$ or $bc \in I$. Payrovi and Babaei[2] extended the concept of 2-absorbing ideals in commutative rings.

Badawi[3] introduced 2-absorbing primary ideals in commutative rings. A proper ideal I of a commutative ring R is said to be a 2-absorbing primary ideal, if whenever $a,b,c\in R$, $abc\in I$, then either $ab\in I$ or $ac\in \sqrt{I}$ or $bc\in \sqrt{I}$. Mustafanasab and Darani[4] extended the concepts of 2-absorbing primary and weakly 2-absorbing primary ideals in commutative rings.

Manjarekar and Bingi[5] introduced 2-absorbing primary elements in multiplicative <u>lattices</u>. They defined, a proper element $q \in L$ to be a 2-absorbing primary if for every $a,b,c \in L,abc \leq q$ implies either $ab \leq q$ or $bc \leq \sqrt{q}$ or $ca \leq \sqrt{q}$.

Celikel etal.[[6], [7]] introduced and studied ϕ -2-absorbing elements in multiplicative lattices. Let $\phi: L \to L \cup \{\emptyset\}$ be a function. A proper element q of L is said to be a ϕ -2-absorbing element of L if whenever $a,b,c\in L$ with $abc \leq q$ and $abc \nleq \phi(q)$ implies either $ab \leq q$ or $ac \leq q$ or $bc \leq q$. Celikel etal.[7] introduced ϕ -2-absorbing primary elements in multiplicative lattices as a generalization of ϕ -2-absorbing elements. Let $\phi: L \to L \cup \{\emptyset\}$ be a function. A proper element q of L is said to be a ϕ -2-absorbing primary element of L if whenever $a,b,c\in L$ with $abc \leq q$ and $abc \nleq \phi(q)$ implies either $ab \leq q$ or $ac \leq \sqrt{q}$ or $bc \leq \sqrt{q}$.

Wasadikar and Gaikwad[8] introduced the concept of a 2-absorbing ideal in a lattice. A proper ideal I of a lattice L is said to be a 2-absorbing ideal, if whenever $a,b,c\in L$, $a\wedge b\wedge c\in I$, then either $a\wedge b\in I$ or $a\wedge c\in I$ or $b\wedge c\in I$.

In this paper we introduce the concepts of the radical of an ideal (denoted by \sqrt{I}), the primary ideal and the 2-absorbing primary ideal in a lattice. It is shown that for an ideal I of a lattice L, \sqrt{I} is a prime ideal of a lattice L if and only if \sqrt{I} is a primary ideal of L. Similarly, it is shown that for an ideal I of a lattice L, \sqrt{I} is a 2-absorbing ideal of a lattice L if and only if \sqrt{I} is a 2-absorbing primary ideal of L. We prove that $I_1 \times L_2$ is a 2-absorbing primary ideal of L1, where L1 is a proper ideal of L1.

The undefined terms are from Gratzer[9].

2. Preliminaries

We generalize the concepts of primary, 2-absorbing and 2-absorbing primary ideals from ring theory to <u>lattices</u>.

Let I be an ideal of a lattice L. We define the radical of I as the intersection of all prime ideals containing I and we denote it as \sqrt{I} .

Remark 2.1

If there does not exist a prime ideal containing an ideal I in a lattice L then $\sqrt{I} = L$.

Remark 2.2

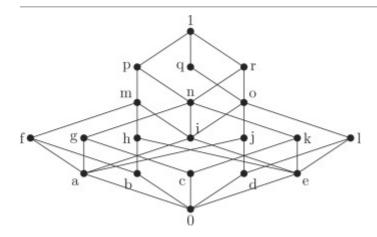
In a <u>distributive lattice</u> L, an ideal I is the intersection of all prime ideals containing it see Gratzer [9, p. 75] i.e. $I = \sqrt{I}$.

However, this may or may not hold in a non distributive lattice.

Example 2.1

Consider the ideal I=(n] of the lattice shown in Fig. 1. The lattice is non distributive. We observe that $I=\sqrt{I}$ since $\sqrt{I}=(p]\cap (r]=(n]$.

The following example shows that $I \subset \sqrt{I}$.



Download: Download high-res image (146KB)

Download: Download full-size image

Fig. 1.

Example 2.2

Consider the ideal I=(l] of the lattice shown in Fig. 1. We observe that $I\subset \sqrt{I}$ since $\sqrt{I}=(q]\cap (r]=(o]$.

Definition 2.2

Typesetting math: 26% open ideal I of L is called primary if $a,b\in L$ and $a\wedge b\in I$ imply I

Example 2.3

In the lattice L shown in Fig. 1, consider the ideal I=(m]. Then $\sqrt{I}=(p]$. The ideal I is a primary ideal.

Consider the ideal I=(j] of a lattice shown in Fig. 1. Then $\sqrt{I}=(q]\cap (r]=(o]$. The ideal I is not a primary ideal since $f\wedge g=a\in I$ but neither $f\in I$ nor $g\in I$. Also, neither $f\in \sqrt{I}$ nor $g\in \sqrt{I}$.

Definition 2.3

Let L be a lattice. A proper ideal I of L is called 2-absorbing if for $a,b,c\in L$, $a\wedge b\wedge c\in I$ then either $a\wedge b\in I$ or $a\wedge c\in I$ or $b\wedge c\in I$.

Example 2.4

Consider the lattice L shown in Fig. 1. Here the ideal (n] is a 2-absorbing ideal.

Consider the ideal I=(b] of a lattice shown in Fig. 1. The ideal I is not a 2-absorbing ideal since $i \land j \land l = 0 \in I$ but neither $i \land j = a \in I$ nor $i \land l = e \in I$ nor $j \land l = d \in I$.

Definition 2.4

Let L be a lattice. A proper ideal I of L is called a 2-absorbing primary if for $a,b,c\in L$, $a\wedge b\wedge c\in I$ then either $a\wedge b\in I$ or $a\wedge c\in \sqrt{I}$ or $b\wedge c\in \sqrt{I}$.

Example 2.5

In the lattice shown in Fig. 1, the ideal (f] is a 2-absorbing primary.

Consider the lattice of divisors of **30**. Let I=(0]. Then $\sqrt{I}=(6]\cap(10]\cap(15]=(0]$. However, $6\wedge 10\wedge 15=0\in I$, but neither $6\wedge 10=2\in I$ nor $6\wedge 15=3\in I$ nor $10\wedge 15=5\in I$. Hence I is not a 2-absorbing primary ideal.

3. Some properties of 2-absorbing primary ideals

The proofs of Lemma 3.1, Lemma 3.2, Lemma 3.3 are obvious.

Lemma 3.1

If I is a prime ideal of a lattice L, then I is a primary ideal of L.

Remark 3.1

Typesetting math: 26% e shows that the converse of Lemma 3.1 does not hold.

Example 3.1

Consider the lattice L shown in Fig. 1. For the ideal $I=(m], \sqrt{I}=(p]$ as (p] is the only prime ideal of L containing I. I is a primary ideal. However $k \wedge l = e \in I$ but neither $k \in I$ nor $l \in I$. Thus I is not a prime ideal.

Lemma 3.2

If I is a primary ideal of a lattice L, then I is a 2-absorbing primary ideal of L.

Remark 3.2

The following example shows that the converse of Lemma 3.2 does not hold.

Example 3.2

Consider the ideal I=(l] of the lattice shown in Fig. 1. Thus $\sqrt{I}=(q]\cap (r]=(o]$. Here I is a 2-absorbing primary ideal. We note that $g\wedge h=0\in I$. However, neither $g\in I$ nor $h\in I$. Also, neither $g\in \sqrt{I}$ nor $h\in \sqrt{I}$. Hence I is not a primary ideal of I.

Lemma 3.3

If I is a 2-absorbing ideal of a lattice L, then I is a 2-absorbing primary ideal of L.

Remark 3.3

The following example shows that the converse of Lemma 3.3 does not hold.

Example 3.3

Consider the ideal I=(0] of the lattice shown in Fig. 1. Thus $\sqrt{I}=(p]\cap (q]\cap (r]=(i]$. Here I is a 2-absorbing primary ideal. However $i\wedge j\wedge l=0\in I$, but neither $i\wedge j=a\in I$ nor $i\wedge l=e\in I$ nor $j\wedge l=d\in I$. Hence I is not a 2-absorbing ideal of L.

The following lemma is from Wasadikar and Gaikwad[8].

Lemma 3.4

Let P_1 and P_2 be two distinct prime ideals of a lattice L, then $P_1 \cap P_2$ is a 2-absorbing ideal of L.

Definition 3.1

Let I be an ideal of a lattice L. We define I as a P-primary ideal of L if P is the only prime ideal containing I.

In the lattice shown in Fig. 1, the ideal (m] is a P-primary ideal, where P = (p] is the only prime ideal containing (m].

The following result is an analog of [3, Theorem 2.4(2)].

Theorem 3.1

Let L be a lattice. Suppose that I_1 is a P_1 -primary ideal of L for some prime ideal P_1 of L and I_2 is a P_2 -primary ideal of L for some prime ideal P_2 of L. Then $I_1 \cap I_2$ is a 2-absorbing primary ideal of L.

Proof

Let $I=I_1\cap I_2$. Then $\sqrt{I}=P_1\cap P_2$. Now suppose that $x\wedge y\wedge z\in I$ for some $x,y,z\in L, x\wedge z\not\in \sqrt{I}$ and $y\wedge z\not\in \sqrt{I}$. Then $x,y,z\not\in \sqrt{I}=P_1\cap P_2$. By Lemma 3.4, $\sqrt{I}=P_1\cap P_2$ is a 2-absorbing ideal of L. Since $x\wedge z,y\wedge z\not\in \sqrt{I}$, we have $x\wedge y\in \sqrt{I}$.

We show that $x \wedge y \in I$. Since $x \wedge y \in \sqrt{I} \subseteq P_1$, we may assume that $x \in P_1$. As $x \notin \sqrt{I}$ and $x \wedge y \in \sqrt{I} \subseteq P_2$, we conclude that $x \notin P_2$ and $y \in P_2$. Since $y \in P_2$ and $y \notin \sqrt{I}$, we have $y \notin P_1$.

If $x \in I_1$ and $y \in I_2$, then $x \land y \in I$ and we are done. We may assume that $x \notin I_1$. Since I_1 is a P_1 -primary ideal and $x \notin I_1$, we have $y \land z \in P_1$. Since $y \in P_2$ and $y \land z \in P_1$, we have $y \land z \in I_1$, which is a contradiction. Thus $x \in I_1$.

Since I_2 is a P_2 -primary ideal of L and if $y \notin I_2$ then $x \land z \in P_2$. Since $x \in P_1$ and $x \land z \in P_1$, we have $x \land z \in \sqrt{I}$, which is a contradiction. Thus $y \in I_2$. Hence $x \land y \in I$. \Box

Theorem 3.2

Let I be a proper ideal of a lattice L such that \sqrt{I} is a prime ideal of L. Then I is a 2-absorbing primary ideal of L.

Proof

Suppose that $a \land b \land c \in I$ for some $a, b, c \in L$ and $a \land b \notin I$.

- (*a*) Suppose that $a \land b \notin \sqrt{I}$. Since \sqrt{I} is a prime ideal of L, $c \in \sqrt{I}$ and so $a \land c \in \sqrt{I}$ and $b \land c \in \sqrt{I}$.
- (*b*) Suppose that $a \land b \in \sqrt{I}$. As \sqrt{I} is a prime ideal, we have either $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Hence $a \land c \in \sqrt{I}$ or $b \land c \in \sqrt{I}$. Thus I is a 2-absorbing primary ideal of L. \square

Remark 3.4

Typesetting math: 26%

riowever, the converse of Theorem 3.2 need not hold.

Example 3.5

Consider the ideal I=(l] of the lattice shown in Fig. 1. Thus $\sqrt{I}=(q]\cap (r]=(o]$. Here I is a 2-absorbing primary ideal. However, $g \wedge h = 0 \in \sqrt{I}$, but neither $g \in \sqrt{I}$ nor $h \in \sqrt{I}$. Thus \sqrt{I} is not a prime ideal of L.

Theorem 3.3

Let I be an ideal of a lattice L. Then \sqrt{I} is a prime ideal of L if and only if \sqrt{I} is a primary ideal of L.

Proof

Suppose that \sqrt{I} is a prime ideal of L. If $a \wedge b \in \sqrt{I}$ then either $a \in \sqrt{I}$ or $b \in \sqrt{I}$. As $\sqrt{I} = \sqrt{\sqrt{I}}$, either $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Hence \sqrt{I} is a primary ideal of L.

Conversely, suppose that \sqrt{I} is a primary ideal of L. Let $a \wedge b \in \sqrt{I}$. As \sqrt{I} is a primary ideal, either $a \in \sqrt{I}$ or $b \in \sqrt{\sqrt{I}} = \sqrt{I}$. Thus \sqrt{I} is a prime ideal of L. \square

Similarly, we can prove the following characterization for 2-absorbing and 2-absorbing primary ideals of a lattice L.

Theorem 3.4

Let I be an ideal of a lattice L. Then \sqrt{I} is a 2-absorbing ideal of L if and only if \sqrt{I} is a 2-absorbing primary ideal of L.

Theorem 3.5

Let *I* be a 2-absorbing primary ideal of a lattice *L* and suppose that $x \land y \land J \subseteq I$ for some $x,y \in L$ and some ideal *J* of *L*. If $x \land y \notin I$, then $x \land J \subseteq \sqrt{I}$ or $y \land J \subseteq \sqrt{I}$.

Proof

Let $x \land y \notin I$. Suppose that $x \land J \nsubseteq \sqrt{I}$ and $y \land J \nsubseteq \sqrt{I}$. Then there exist some j_1 and some j_2 in J such that $x \land j_1 \notin \sqrt{I}$ and $y \land j_2 \notin \sqrt{I}$. As $x \land y \land j_1 \in I$, we have $y \land j_1 \in \sqrt{I}$ since I is a 2-absorbing primary ideal. Similarly, $x \land y \land j_2 \in I$ implies $x \land j_2 \in \sqrt{I}$.

Since $x \land y \land \left(j_1 \lor j_2\right) \in I$ and $x \land y \notin I$, we have either $x \land \left(j_1 \lor j_2\right) \in \sqrt{I}$ or $y \land \left(j_1 \lor j_2\right) \in \sqrt{I}$. Suppose that $x \land \left(j_1 \lor j_2\right) \in \sqrt{I}$. Therefore, $\left(x \land j_1\right) \lor \left(x \land j_2\right) \leq x \land \left(j_1 \lor j_2\right) \in \sqrt{I}$ and so $\left(x \land j_1\right) \lor \left(x \land j_2\right) \in \sqrt{I}$. Hence $x \land j_2 \in \sqrt{I}$ and $x \land j_1 \in \sqrt{I}$, which is a contradiction.

Similarly, if $y \land (j_1 \lor j_2) \in \sqrt{I}$ then $(y \land j_1) \lor (y \land j_2) \in \sqrt{I}$. Hence $y \land j_1 \in \sqrt{I}$ and $y \land j_2 \in \sqrt{I}$, which is a contradiction. Hence $x \land J \subseteq \sqrt{I}$ or $y \land J \subseteq \sqrt{I}$. \Box

Remark 3.5

The converse of Theorem 3.5 does not hold.

Example 3.6

Consider the ideal I = (l] of the lattice shown in Fig. 1. Thus $\sqrt{I} = (o]$. I is a 2-absorbing primary ideal. Consider the ideal J = (e]. Now, $h \land i \land J = J \subseteq I$, $h \land J = J \subseteq I$ and $i \land J = J \subseteq I$, but $h \land i \in I$.

We give a characterization of a 2-absorbing primary ideal, which is an analog of [3, Theorem 2.19].

Theorem 3.6

Let *I* be a proper ideal of a lattice *L*. Then *I* is a 2-absorbing primary ideal if and only if whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of *L*, then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq \sqrt{I}$ or $I_2I_3 \subseteq \sqrt{I}$.

Proof

Let I be an ideal of L such that if $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of L then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$ or $I_2I_3 \subseteq \sqrt{I}$ or $I_2I_3 \subseteq \sqrt{I}$. We show that I is a 2-absorbing primary ideal of L. Let $a \land b \land c \in I$ for $a, b, c \in L$. This implies that $(a] \land (b] \land (c] \subseteq I$. Let $I_1 = (a]$, $I_2 = (b]$ and $I_3 = (c]$. By hypothesis, either $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq \sqrt{I}$ or $I_2I_3 \subseteq \sqrt{I}$. Hence either $a \land b \in I$ or $a \land c \in \sqrt{I}$ or $b \land c \in \sqrt{I}$. Thus I is a 2-absorbing primary ideal of L.

Conversely, suppose that I is a 2-absorbing primary ideal. Let $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of L. Suppose that $I_1I_2 \nsubseteq I$. We show that $I_1I_3 \subseteq \sqrt{I}$ or $I_2I_3 \subseteq \sqrt{I}$. Suppose that $I_1I_3 \nsubseteq \sqrt{I}$ and $I_2I_3 \nsubseteq \sqrt{I}$. Then there exist $q_1 \in I_1$ and $q_2 \in I_2$ such that $q_1 \wedge I_3 \nsubseteq \sqrt{I}$ and $q_2 \wedge I_3 \nsubseteq \sqrt{I}$. As $q_1 \wedge q_2 \wedge I_3 \subseteq I$, we have $q_1 \wedge q_2 \in I$ by Theorem 3.5. Since $I_1I_2 \nsubseteq I$, we have $a \wedge b \notin I$ for some $a \in I_1, b \in I_2$. Since $a \wedge b \wedge I_3 \subseteq I$ and $a \wedge b \notin I$, we have $a \wedge I_3 \subseteq \sqrt{I}$ or $b \wedge I_3 \subseteq \sqrt{I}$ by Theorem 3.5. We consider three cases.

Case 1: Suppose that $a \wedge I_3 \subseteq \sqrt{I}$ but $b \wedge I_3 \nsubseteq \sqrt{I}$. Since $q_1 \wedge b \wedge I_3 \subseteq I$ and $b \wedge I_3 \nsubseteq \sqrt{I}$ and $q_1 \wedge I_3 \nsubseteq \sqrt{I}$, we conclude that $q_1 \wedge b \in I$ by Theorem 3.5. Since $\begin{pmatrix} a \vee q_1 \end{pmatrix} \wedge b \wedge I_3 \subseteq I$ and $a \wedge I_3 \subseteq \sqrt{I}$, but $q_1 \wedge I_3 \nsubseteq \sqrt{I}$, we conclude that $\begin{pmatrix} a \vee q_1 \end{pmatrix} \wedge I_3 \nsubseteq \sqrt{I}$. Since $b \wedge I_3 \nsubseteq \sqrt{I}$ and $\begin{pmatrix} a \vee q_1 \end{pmatrix} \wedge I_3 \nsubseteq \sqrt{I}$, we conclude that $\begin{pmatrix} a \vee q_1 \end{pmatrix} \wedge b \in I$ by Theorem 3.5. Since $\begin{pmatrix} a \wedge b \end{pmatrix} \vee \begin{pmatrix} q_1 \wedge b \end{pmatrix} \leq \begin{pmatrix} a \vee q_1 \end{pmatrix} \wedge b \in I$, we have $\begin{pmatrix} a \wedge b \end{pmatrix} \vee \begin{pmatrix} q_1 \wedge b \end{pmatrix} \in I$. Thus $q_1 \wedge b \in I$ and $a \wedge b \in I$, a contradiction.

Typesetting math: 26% $b \wedge I_3 \subseteq \sqrt{I}$, but $a \wedge I_3 \nsubseteq \sqrt{I}$.

Since $a \land q_2 \land I_3 \subseteq I$ and $a \land I_3 \nsubseteq \sqrt{I}$ and $q_2 \land I_3 \nsubseteq \sqrt{I}$, we conclude that $a \land q_2 \in I$ by Theorem 3.5. Since $a \land (b \lor q_2) \land I_3 \subseteq I$ and $b \land I_3 \subseteq \sqrt{I}$, but $q_2 \land I_3 \nsubseteq \sqrt{I}$, we conclude that $(b \lor q_2) \land I_3 \nsubseteq \sqrt{I}$. Since $a \land I_3 \nsubseteq \sqrt{I}$ and $(b \lor q_2) \land I_3 \nsubseteq \sqrt{I}$, we conclude that $a \land (b \lor q_2) \in I$ by Theorem 3.5. Since $(a \land b) \lor (a \land q_2) \subseteq a \land (b \lor q_2) \in I$, we have $(a \land b) \lor (a \land q_2) \in I$. Thus $a \land q_2 \in I$ and $a \land b \in I$, a contradiction.

Case 3: $a \wedge I_3 \subseteq \sqrt{I}$ and $b \wedge I_3 \subseteq \sqrt{I}$.

Since $b \wedge I_3 \subseteq \sqrt{I}$ and $q_2 \wedge I_3 \not\subseteq \sqrt{I}$, we conclude that $(b \vee q_2) \wedge I_3 \not\subseteq \sqrt{I}$. Since $q_1 \wedge (b \vee q_2) \wedge I_3 \subseteq I$ and $q_1 \wedge I_3 \not\subseteq \sqrt{I}$ and $(b \vee q_2) \wedge I_3 \not\subseteq \sqrt{I}$, we conclude that $q_1 \wedge (b \vee q_2) \in I$ by Theorem 3.5. As $(q_1 \wedge b) \vee (q_1 \wedge q_2) \leq q_1 \wedge (b \vee q_2) \in I$, we have $(q_1 \wedge b) \vee (q_1 \wedge q_2) \in I$. Hence $b \wedge q_1 \in I$. Since $a \wedge I_3 \subseteq \sqrt{I}$ and $q_1 \wedge I_3 \not\subseteq \sqrt{I}$, we conclude that $(a \vee q_1) \wedge I_3 \not\subseteq \sqrt{I}$. Since $(a \vee q_1) \wedge q_2 \wedge I_3 \subseteq I$ and $q_2 \wedge I_3 \not\subseteq \sqrt{I}$ and $(a \vee q_1) \wedge I_3 \not\subseteq \sqrt{I}$, we conclude that $(a \vee q_1) \wedge q_2 \in I$ by Theorem 3.5. As $(a \wedge q_2) \vee (q_1 \wedge q_2) \leq (a \vee q_1) \wedge q_2 \in I$, we have $(a \wedge q_2) \vee (q_1 \wedge q_2) \in I$. Hence $a \wedge q_2 \in I$. Now, since $(a \vee q_1) \wedge (b \vee q_2) \wedge I_3 \subseteq I$ and $(a \vee q_1) \wedge I_3 \not\subseteq \sqrt{I}$ and $(b \vee q_2) \wedge I_3 \not\subseteq \sqrt{I}$, we conclude that $(a \vee q_1) \wedge (b \vee q_2) \in I$ by Theorem 3.5. We conclude that $a \wedge b \in I$, a contradiction. Hence $I_1I_3 \subseteq \sqrt{I}$ or $I_2I_3 \subseteq \sqrt{I}$. \square

Theorem 3.7

Let $f: L \to L'$ be a <u>homomorphism</u> of lattices. Then the following statements hold:

- (1) If P' is a prime ideal of L', then $f^{-1}(P')$ is a prime ideal of L.
- (2) If f is an isomorphism and P is a prime ideal of L, then f(P) is a prime ideal of L'.

Proof

- (1) Let $a \wedge b \in f^{-1}\left(P'\right)$ for $a, b \in L$. Then $f\left(a \wedge b\right) \in P'$. Hence $f\left(a\right) \wedge f\left(b\right) \in P'$. This implies that either $f\left(a\right) \in P'$ or $f\left(b\right) \in P'$. That is either $a \in f^{-1}\left(P'\right)$ or $b \in f^{-1}\left(P'\right)$. Thus $f^{-1}\left(P'\right)$ is a prime ideal of L.
- (2) Let $a' \wedge b' \in f(P)$ for $a', b' \in L'$. Then there exist some $a, b \in L$ such that f(a) = a' and f(b) = b'. Thus $f(a) \wedge f(b) = a' \wedge b' \in f(P)$. Thus $f(a \wedge b) \in f(P)$. Hence $a \wedge b \in P$. As P is a prime ideal of L, either $a \in P$ or $b \in P$. That is either $f^{-1}(a') \in P$ or $f^{-1}(b') \in P$. Hence either $a' \in f(P)$ or $b \in f(P)$. Thus f(P) is a prime ideal of L'. \Box

Theorem 3.8

Let $f: L \to L'$ be a homomorphism of lattices. Then the following statements hold:

Typesetting math: 26% then
$$f^{-1}\left(\sqrt{I'}\right) = \sqrt{f^{-1}\left(I'\right)}$$
.

(2) If f is an isomorphism and I is an ideal of L, then $f(\sqrt{I}) = \sqrt{f(I)}$.

Proof

- (1) Let P_i' 's be all prime ideals of L' containing I' where $i \in \Lambda$. Then $f^{-1}\left(\sqrt{I'}\right) = f^{-1}\left(\bigcap P_i'\right)$. Which implies that $f^{-1}\left(\sqrt{I'}\right) = \bigcap f^{-1}\left(P_i'\right)$. As P_i' 's are prime ideals of L', $f^{-1}\left(P_i'\right)$'s are prime ideals of L, by Theorem 3.7 (1) and as $I' \subseteq \bigcap P_i'$, we have $f^{-1}\left(I'\right) \subseteq \bigcap f^{-1}\left(P_i'\right)$. Which implies that $\bigcap f^{-1}\left(P_i'\right) = \sqrt{f^{-1}\left(I'\right)}$. Hence $f^{-1}\left(\sqrt{I'}\right) = \sqrt{f^{-1}\left(I'\right)}$.
- (2) Let P_i 's be all prime ideals of L containing I where $i \in \Lambda$. Then $f(\sqrt{I}) = f(\cap P_i)$. This implies that $f(\sqrt{I}) = \bigcap f(P_i)$. As P_i 's are prime ideals of L, $f(P_i)$'s are prime ideals of L', by Theorem 3.7 (2) and as $I \subseteq \bigcap P_i$, we have $f(I) \subseteq \bigcap f(P_i)$. Implies that $\bigcap f(P_i) = \sqrt{f(I)}$. Hence $f(\sqrt{I}) = \sqrt{f(I)}$. \square

The following result is an analog of [3, Theorem 2.20].

Theorem 3.9

Let $f: L \to L'$ be a homomorphism of lattices. Then the following statements hold:

- (1) If I' is a 2-absorbing primary ideal of L', then $f^{-1}(I')$ is a 2-absorbing primary ideal of L.
- (2) If f is an isomorphism and I is a 2-absorbing primary ideal of L, then f(I) is a 2-absorbing primary ideal of L'.

Proof

- (1) Let $a,b,c \in L$ such that $a \wedge b \wedge c \in f^{-1}\left(I'\right)$. Then $f\left(a \wedge b \wedge c\right) = f\left(a\right) \wedge f\left(b\right) \wedge f\left(c\right) \in I'$. As I' is 2-absorbing primary ideal, we have either $f\left(a\right) \wedge f\left(b\right) \in I'$ or $f\left(a\right) \wedge f\left(c\right) \in \sqrt{I}$ or $f\left(b\right) \wedge f\left(c\right) \in \sqrt{I}$. That is either $a \wedge b \in f^{-1}\left(I'\right)$ or $a \wedge c \in f^{-1}\left(\sqrt{I'}\right)$ or $b \wedge c \in f^{-1}\left(\sqrt{I'}\right)$. As $f^{-1}\left(\sqrt{I'}\right) = \sqrt{f^{-1}\left(I'\right)}$, by Theorem 3.8 (1), $a \wedge b \in f^{-1}\left(I'\right)$ or $a \wedge c \in \sqrt{f^{-1}\left(I'\right)}$ or $b \wedge c \in \sqrt{f^{-1}\left(I'\right)}$. Thus $f^{-1}\left(I'\right)$ is a 2-absorbing primary ideal of L.
- (2) Let $a', b', c' \in L'$ and $a' \wedge b' \wedge c' \in f(I)$. Then there exist $a, b, c \in L$ such that f(a) = a', f(b) = b', f(c) = c' and $f(a) \wedge f(b) \wedge f(c) = a' \wedge b' \wedge c' \in f(I)$. That is $f(a) \wedge f(b) \wedge f(c) \in f(I)$. Hence $a \wedge b \wedge c \in I$. As I is a 2-absorbing primary ideal, we have either $a \wedge b \in I$ or $a \wedge c \in \sqrt{I}$ or $b \wedge c \in \sqrt{I}$. That is either $f^{-1}(a' \wedge b') \in I$ or $f^{-1}(a' \wedge c') \in \sqrt{I}$ or $f^{-1}(b' \wedge c') \in I$. Thus either $a' \wedge b' \in f(I)$ or $a' \wedge c' \in f(\sqrt{I})$ or Typesetting math: 26% $\sqrt{I} = \sqrt{I} = \sqrt{I} = I$, by Theorem 3.8 (2) $a' \wedge b' \in f(I) = I$ or $a' \wedge c' \in \sqrt{I} = I$. Hence f(I) = I is a 2-absorbing ideal of I'. I'

4. 2-absorbing primary ideals in product lattices

In this section we prove some results on 2-absorbing primary ideals in product lattices. The notion of the product lattice is from Gratzer[9, p. 27].

The proof of the following theorem is obvious.

Theorem 4.1

Let $L = L_1 \times L_2$, where L_1 and L_2 are lattices. Let P_i 's and Q_j 's be ideals of L_1 and L_2 respectively, where $i \in \Lambda_1$ and $j \in \Lambda_2$. Then $\bigcap (P_i \times Q_j) = \bigcap P_i \times \bigcap Q_j$.

Theorem 4.2

Let $L = L_1 \times L_2$, where each L_i , (i = 1, 2) is a lattice with 1. Then the following hold:

- (1) If I_1 is an ideal of L_1 , then $\sqrt{I_1 \times L_2} = \sqrt{I_1} \times L_2$.
- (2) If I_2 is an ideal of L_2 , then $\sqrt{L_1 \times I_2} = L_1 \times \sqrt{I_2}$.

Proof

(1) Let $(a,b) \in \sqrt{I_1 \times I_2}$. Thus $(a,b) \in \bigcap_{i \in \Lambda} (P_i \times I_2)$, where and P_i 's are all prime ideals of a lattice I_1 containing I_1 . Thus $a \in \bigcap_{i \in \Lambda} P_i$, $b \in I_2$. Thus $a \in \sqrt{I_1}$, $b \in I_2$ and so $(a,b) \in \sqrt{I_1} \times I_2$.

If
$$(a,b) \in \sqrt{I_1} \times L_2$$
 then $a \in \sqrt{I_1}$, $b \in L_2$. Thus $a \in \bigcap_{i \in \Lambda} P_i$, $b \in L_2$ and so $(a,b) \in \bigcap_{i \in \Lambda} (P_i \times L_2)$. i.e. $(a,b) \in \sqrt{I_1 \times L_2}$. Hence $\sqrt{I_1 \times L_2} = \sqrt{I_1} \times L_2$.

(2) Proof is similar to that of (1). \Box

The following characterization gives a relation between a 2-absorbing primary ideal of a product of two lattices and a 2-absorbing primary ideal of one of the lattice in this product.

Theorem 4.3

Let $L = L_1 \times L_2$, where L_1 and L_2 are lattices. Let I be a proper ideal of L_1 . Then $I \times L_2$ is a 2-absorbing primary ideal if and only if I is a 2-absorbing primary ideal of L_1 .

Proof

Suppose that $I \times L_2$ is a 2-absorbing ideal of L. Let $a \wedge b \wedge c \in I$ for $a,b,c \in L_1$. Then $(a \wedge b \wedge c,x) \in I \times L_2$ for $x \in L_2$. As $I \times L_2$ is a 2-absorbing primary ideal of L, either Typesetting math: 26% $(a \wedge c,x) \in \sqrt{I \times L_2}$ or $(b \wedge c,x) \in \sqrt{I \times L_2}$. Then either

 $(a \land b, x) \in I \times L_2$ or $(a \land c, x) \in \sqrt{I} \times L_2$ or $(b \land c, x) \in \sqrt{I} \times L_2$, by Theorem 4.2. Hence either $a \land b \in I$ or $a \land c \in \sqrt{I}$ or $b \land c \in \sqrt{I}$.

Conversely, suppose that I is a 2-absorbing primary ideal of L_1 . Let $(a \land b \land c, x) \in I$ for $a, b, c \in L_1$ and $x \in L_2$. As I is a 2-absorbing primary ideal of L_1 , either $(a \land b, x) \in I \times L_2$ or $(a \land c, x) \in \sqrt{I} \times L_2$ or $(b \land c, x) \in \sqrt{I} \times L_2$. That is either $(a \land b, x) \in I \times L_2$ or $(a \land c, x) \in \sqrt{I \times L_2}$ or $(b \land c, x) \in \sqrt{I \times L_2}$, by Theorem 4.2. \square

Theorem 4.4

Let $L = L_1 \times L_2$, where L_1 and L_2 are lattices. Let I_1 and I_2 be proper ideals of L_1 and L_2 respectively. If $I = I_1 \times I_2$ is a 2-absorbing primary ideal of L then I_1 and I_2 are 2-absorbing primary ideals of L_1 and L_2 respectively.

Proof

Let $a \wedge b \wedge c \in I_1$ for some $a,b,c \in L_1$. Then $(a \wedge b \wedge c,x) \in I_1 \times I_2$ for $x \in I_2$. As $I_1 \times I_2$ is a 2-absorbing primary ideal, either $(a \wedge b,x) \in I_1 \times I_2$ or $(a \wedge c,x) \in \sqrt{I_1 \times I_2}$ or $(b \wedge c,x) \in \sqrt{I_1 \times I_2}$, that is either $(a \wedge b,x) \in I_1 \times I_2$ or $(a \wedge c,x) \in \sqrt{I_1} \times \sqrt{I_2}$ or $(b \wedge c,x) \in \sqrt{I_1} \times \sqrt{I_2}$, by Theorem 4.2. Hence $a \wedge b \in I_1$ or $a \wedge c \in \sqrt{I_1}$ or $b \wedge c \in \sqrt{I_1}$. Thus I_1 is a 2-absorbing primary ideal of I_2 . \square

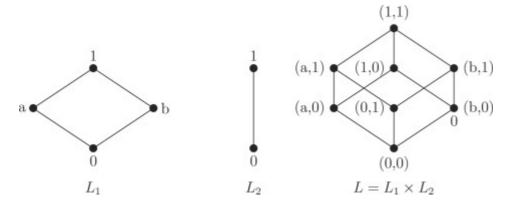
Remark 4.1

The converse of Theorem 4.4 need not hold.

Example 4.1

Consider the lattices L_1 , L_2 and $L = L_1 \times L_2$ as shown in Fig. 2. Consider the ideals $I_1 = \{0\}$, $I_2 = \{0\}$ of the lattices L_1 and L_2 respectively. Thus $I_1 \times I_2 = \{(0,0)\}$ and $\sqrt{I_1 \times I_2} = \{(0,0)\}$. The ideals I_1 and I_2 are 2-absorbing primary ideals of L_1 and L_2 respectively. But for $(a,1) \wedge (1,0) \wedge (b,1) = (0,0) \in I_1 \times I_2$, neither $(a,1) \wedge (1,0) = (a,0) \in I_1 \times I_2$ nor $(a,1) \wedge (b,1) = (0,1) \in I_1 \times I_2$ nor $(1,0) \wedge (b,1) = (b,0) \in I_1 \times I_2$. Thus $I_1 \times I_2$ is not a 2-absorbing primary ideal of L.

Now we give a characterization of a 2-absorbing primary ideal in a product of two lattices, which is an analog of [3, Theorem 2.23].



Download: Download high-res image (124KB)

Download: Download full-size image

Fig. 2.

Theorem 4.5

Let $L = L_1 \times L_2$, where L_1 and L_2 are bounded lattices. Let J be a proper ideal of L. Then the following statements are equivalent:

- (1) *I* is a 2-absorbing primary ideal of *L*.
- (2) Either $J = I_1 \times L_2$ for some 2-absorbing primary ideal I_1 of L_1 or $J = L_1 \times I_2$ for some 2-absorbing primary ideal I_2 of L_2 or $J = I_1 \times I_2$ for some primary ideal I_1 of L_1 and some primary ideal I_2 of L_2 .

Proof

(1) \Rightarrow (2). Suppose that J is a 2-absorbing primary ideal of L. Then $J = I_1 \times I_2$ for some ideal I_1 of L_1 and some ideal I_2 of L_2 .

Case 1: If $I_2 = L_2$ then $I_1 \neq L_1$. Thus $J = I_1 \times L_2$. Let $a \wedge b \wedge c \in I_1$ for some $a, b, c \in L_1$. Then $(a \wedge b \wedge c, x \wedge y \wedge z) \in I_1 \times L_2$, where $x, y, z \in L_2$. As J is a 2-absorbing primary ideal, we have either $(a \wedge b, x \wedge y) \in I_1 \times L_2$ or $(a \wedge c, x \wedge z) \in \sqrt{I_1 \times L_2}$ or $(b \wedge c, y \wedge z) \in \sqrt{I_1 \times L_2}$. By Lemma 3.1, either $(a \wedge b, x \wedge y) \in I_1 \times L_2$ or $(a \wedge c, x \wedge z) \in \sqrt{I_1} \times L_2$ or $(b \wedge c, y \wedge z) \in \sqrt{I_1} \times L_2$. Thus I_1 is a 2-absorbing primary ideal of L_1 .

Case 2: If $I_1 = L_1$ then $I_2 \neq L_2$. Thus $J = L_1 \times I_2$. Similarly, as in previous case, I_2 is a 2-absorbing primary ideal of L_2 .

Case 3: Now if $I_1 \neq L_1$ and $I_2 \neq L_2$ then $J = I_1 \times I_2$. That is $\sqrt{J} = \sqrt{I_1} \times \sqrt{I_2}$. On the contrary, suppose that I_1 is not a primary ideal of L_1 . Then there are $a, b \in L_1$ such that $a \wedge b \in I_1$ but neither $a \in I_1$ nor $b \in \sqrt{I_1}$. Let x = (a, 1), y = (1, 0) and c = (b, 1). Then

Typesetting math: 26% E *J* but neither $x \land y = (a,0) \in J$ nor $x \land c = (a \land b,1) \in \sqrt{J}$ nor $y \land c = (b,0) \in \sqrt{J}$, which is a contradiction. Thus I_1 is a primary ideal of L_1 . Suppose

that I_2 is not a primary ideal of L_2 . Then there exist $d, e \in L_2$ such that $d \land e \in I_2$ but neither $d \in I_2$ nor $e \in \sqrt{I_2}$. Let x = (1, d), y = (0, 1) and c = (1, e). Then $x \land y \land c = (0, d \land e) \in J$ but neither $x \land y = (0, d) \in J$ nor $x \land c = (1, d \land e) \in \sqrt{J}$ nor $y \land c = (0, e) \in \sqrt{J}$, which is a contradiction. Thus I_2 is a primary ideal of L_2 .

(2) \Rightarrow (1). Suppose that $J = I_1 \times L_2$ for some 2-absorbing primary ideal I_1 of L_1 . Let $(a_1,b_1) \land (a_2,b_2) \land (a_3,b_3) \in I_1 \times L_2$. Then $a_1 \land a_2 \land a_3 \in I_1$. As I_1 is 2-absorbing primary ideal of L_1 , we have either $a_1 \land a_2 \in I_1$ or $a_1 \land a_3 \in \sqrt{I_1}$ or $a_2 \land a_3 \in \sqrt{I_1}$. That is either $(a_1,b_1) \land (a_2,b_2) \in I_1 \times L_2$ or $(a_1,b_1) \land (a_3,b_3) \in \sqrt{I_1} \times L_2$ or $(a_2,b_2) \land (a_3,b_3) \in \sqrt{I_1} \times L_2$. Hence either $(a_1,b_1) \land (a_2,b_2) \in I_1 \times L_2$ or $(a_1,b_1) \land (a_3,b_3) \in \sqrt{I_1} \times L_2$ or $(a_2,b_2) \land (a_3,b_3) \in \sqrt{I_1} \times L_2$ or $(a_2,b_2) \land (a_3,b_3) \in \sqrt{I_1} \times L_2$ by Theorem 4.2. Thus $J = I_1 \times I_2$ is a 2-absorbing primary ideal of L. Similarly $L_1 \times I_2$ is a 2-absorbing primary ideal of L. Suppose that $J = I_1 \times I_2$ for some primary ideals of L. Hence $P \cap Q = I_1 \times I_2$. Thus $J = I_1 \times I_2$ is a 2-absorbing primary ideal, by Theorem 3.1. \square

The following theorem is a generalization of Theorem 4.5, which is an analog of [3, Theorem 2.24].

Theorem 4.6

Let $L = L_1 \times L_2 \cdots \times L_n$, where $2 \le n < \infty$, and L_1, L_2, \ldots, L_n are lattices. Let J be a proper ideal of L. Then the following statements are equivalent.

- (1) I is a 2-absorbing primary ideal of L.
- (2) Either $J = \prod_{t=1}^{n} I_t$ such that for some $k \in \{1, 2, ..., n\}$, I_k is a 2-absorbing primary ideal of L_k , and $I_t = L_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k\}$ or $J = \prod_{t=1}^{n} I_t$ such that for some $k, m \in \{1, 2, ..., n\}$, I_k is a primary ideal of L_k , I_m is a primary ideal of L_m , and $I_t \neq L_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k, m\}$.

Proof

(1) \Leftrightarrow (2) We prove this theorem by induction on n. Assume n=2. Then by Theorem 4.5, the result holds. Thus suppose that $3 \le n < \infty$ and assume that the result is valid when $K = L_1 \times L_2 \cdots L_{n-1}$. Now we prove the result when $L = K \times L_n$. By Theorem 4.5, J is a 2-absorbing primary ideal of L if and only if either $J = A \times L_n$ for some 2-absorbing primary ideal A_n of L_n or $J = A \times A_n$ for some primary ideal A of K and some primary ideal A_n of L_n . Now observe that a proper ideal B of K is a primary ideal of K if and only if $B = \prod_{t=1}^{n-1} I_t$ such that for some $k \in \{1, 2, ..., n-1\}$, I_k is a primary ideal of L_k , and $L_t \neq L_t$ for every Typesetting math: 26% $\{k, m\}$. □

Acknowledgments

The authors are thankful to the referees for their suggestions for the improvement of the paper.

Special issue articles Recommended articles

References

[1] Badawi A.

On 2-absorbing ideals of commutative rings

Bull. Aust. Math. Soc., 75 (2007), pp. 417-429

View in Scopus ♂ Google Scholar ↗

[2] Payrovi S., Babaei S.

On the 2-absorbing ideals

Int. Math. Forum, 7 (6) (2012), pp. 265-271

Google Scholar 7

[3] Badawi A., Tekir U., Yetkin E.

On 2-absorbing primary ideals in commutative rings

Bull. Korean Math. Soc., 51 (2014), pp. 1163-1173

CrossRef > View in Scopus > Google Scholar >

[4] Mustafanasab H., Darani A.Y.

Some properties of 2-absorbing and weakly 2-absorbing primary ideals Trans. Algebra Appl., 1 (1) (2015), pp. 10-18

Trails: Atgebra Appt., 1 (1) (2015), pp. 10-10

Google Scholar **↗**

[5] Manjarekar C.S., Bingi A.V.

On 2-absorbing primary and weakly 2-absorbing primary elements in multiplicative lattices

Trans. Algebra Appl., 2 (2016), pp. 1-13

Google Scholar 7

[6] Celikel E.Y., Ugurlu E.A., Ulucak G.

On Φ -2-absorbing elements in multiplicative lattices

Palestine J. Math., 5 (Special Issue: 1) (2016), pp. 127-135

Google Scholar 7

Typesetting math: 26% ak G., Ugurlu E.A.

On Φ -2-absorbing elements in multiplicative lattices

Palestine J. Math., 5 (Special Issue: 1) (2016), pp. 136-146

Google Scholar 7

[8] Wasadikar M.P., Gaikwad K.T.

On 2-absorbing and weakly 2-absorbing ideals of lattices

Math. Sci. Int. Res. J., 4 (2015), pp. 82-85

Google Scholar ↗

[9] Gratzer G.

Lattice Theory: First Concepts and Distributive Lattices

W. H. Freeman and company, San Francisco (1971)

Google Scholar 7

Cited by (5)

2-absorbing hyperideals and homomorphisms in join hyperlattices ¬

2023, Results in Nonlinear Analysis

Fuzzy Weakly 2-Absorbing Ideals of a Lattice *¬*

2022, Discussiones Mathematicae - General Algebra and Applications

On 2-absorbing Primary Ideals of Commutative Semigroups 7

2022, Kyungpook Mathematical Journal

Computation of prime hyperideals in meet hyperlattices ¬

2022, Bulletin of Computational Applied Mathematics

Generalizations of δ -primary elements in multiplicative lattices \neg

2021, Palestine Journal of Mathematics

Peer review under responsibility of Kalasalingam University.

© 2018 Kalasalingam University. Production and Hosting by Elsevier B.V.

All content on this site: Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.

