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Abstract

We introduce the concepts of a primary and a 2-absorbing primary ideal and the radical

of an ideal in a lattice. We study some properties of these ideals. A characterization for

the radical of an ideal to be a primary ideal is given. Also a characterization for an ideal 

to be a 2-absorbing primary ideal is proved. Examples and counter examples are given

wherever necessary.
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1. Introduction

Badawi [1] introduced the concept of a 2-absorbing ideal in a commutative ring. A proper

ideal  of a commutative ring  is said to be a 2-absorbing ideal, if whenever ,
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, then either  or  or . Payrovi and Babaei [2] extended the

concept of 2-absorbing ideals in commutative rings.

Badawi [3] introduced 2-absorbing primary ideals in commutative rings. A proper ideal 

of a commutative ring  is said to be a 2-absorbing primary ideal, if whenever

, , then either  or  or . Mustafanasab and

Darani [4] extended the concepts of 2-absorbing primary and weakly 2-absorbing

primary ideals in commutative rings.

Manjarekar and Bingi [5] introduced 2-absorbing primary elements in multiplicative

lattices. They defined, a proper element  to be a 2-absorbing primary if for every

 implies either  or  or .

Celikel et al. [[6], [7]] introduced and studied -2-absorbing elements in multiplicative

lattices. Let  be a function. A proper element  of  is said to be a -2-

absorbing element of  if whenever  with  and  implies

either  or  or . Celikel et al. [7] introduced -2-absorbing primary

elements in multiplicative lattices as a generalization of -2-absorbing elements. Let

 be a function. A proper element  of  is said to be a -2-absorbing

primary element of  if whenever  with  and  implies

either  or  or .

Wasadikar and Gaikwad [8] introduced the concept of a 2-absorbing ideal in a lattice. A

proper ideal  of a lattice  is said to be a 2-absorbing ideal, if whenever ,

, then either  or  or .

In this paper we introduce the concepts of the radical of an ideal (denoted by ), the

primary ideal and the 2-absorbing primary ideal in a lattice. It is shown that for an ideal

 of a lattice ,  is a prime ideal of a lattice  if and only if  is a primary ideal of .

Similarly, it is shown that for an ideal  of a lattice ,  is a 2-absorbing ideal of a

lattice  if and only if  is a 2-absorbing primary ideal of . We prove that  is a

2-absorbing primary ideal of  if and only if  is a 2-absorbing primary ideal

of , where  is a proper ideal of .

The undefined terms are from Gratzer [9].

2. Preliminaries

We generalize the concepts of primary, 2-absorbing and 2-absorbing primary ideals from

ring theory to lattices.

Definition 2.1Typesetting math: 26%
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Let  be an ideal of a lattice . We define the radical of  as the intersection of all prime

ideals containing  and we denote it as .

Remark 2.1

If there does not exist a prime ideal containing an ideal  in a lattice  then .

Remark 2.2

In a distributive lattice , an ideal  is the intersection of all prime ideals containing it

see Gratzer [9, p. 75] i.e.  .

However, this may or may not hold in a non distributive lattice.

Example 2.1

Consider the ideal  of the lattice shown in Fig. 1. The lattice is non distributive.

We observe that  since .

The following example shows that .
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Fig. 1.

Example 2.2

Consider the ideal  of the lattice shown in Fig. 1. We observe that  since

.

Definition 2.2

Let  be a lattice. A proper ideal  of  is called primary if  and  imply

that either  or .
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Example 2.3

In the lattice  shown in Fig. 1, consider the ideal . Then . The ideal  is

a primary ideal.

Consider the ideal  of a lattice shown in Fig. 1. Then . The

ideal  is not a primary ideal since  but neither  nor . Also,

neither  nor .

Definition 2.3

Let  be a lattice. A proper ideal  of  is called 2-absorbing if for ,

 then either  or  or .

Example 2.4

Consider the lattice  shown in Fig. 1. Here the ideal  is a 2-absorbing ideal.

Consider the ideal  of a lattice shown in Fig. 1. The ideal  is not a 2-absorbing

ideal since  but neither  nor  nor

.

Definition 2.4

Let  be a lattice. A proper ideal  of  is called a 2-absorbing primary if for ,

 then either  or  or .

Example 2.5

In the lattice shown in Fig. 1, the ideal  is a 2-absorbing primary.

Consider the lattice of divisors of . Let . Then .

However, , but neither  nor  nor

. Hence  is not a 2-absorbing primary ideal.

3. Some properties of 2-absorbing primary ideals

The proofs of Lemma 3.1, Lemma 3.2, Lemma 3.3 are obvious.

Lemma 3.1

If  is a prime ideal of a lattice , then  is a primary ideal of .

Remark 3.1

The following example shows that the converse of Lemma 3.1 does not hold.Typesetting math: 26%
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Example 3.1

Consider the lattice  shown in Fig. 1. For the ideal ,  as  is the only

prime ideal of  containing .  is a primary ideal. However  but neither

 nor . Thus  is not a prime ideal.

Lemma 3.2

If  is a primary ideal of a lattice , then  is a 2-absorbing primary ideal of .

Remark 3.2

The following example shows that the converse of Lemma 3.2 does not hold.

Example 3.2

Consider the ideal  of the lattice shown in Fig. 1. Thus . Here 

is a 2-absorbing primary ideal. We note that . However, neither  nor

. Also, neither  nor . Hence  is not a primary ideal of .

Lemma 3.3

If  is a 2-absorbing ideal of a lattice , then  is a 2-absorbing primary ideal of .

Remark 3.3

The following example shows that the converse of Lemma 3.3 does not hold.

Example 3.3

Consider the ideal  of the lattice shown in Fig. 1. Thus .

Here  is a 2-absorbing primary ideal. However , but neither

 nor  nor . Hence  is not a 2-absorbing ideal of .

The following lemma is from Wasadikar and Gaikwad [8].

Lemma 3.4

Let  and  be two distinct prime ideals of a lattice , then  is a 2-absorbing ideal

of .

Definition 3.1

Let  be an ideal of a lattice . We define  as a -primary ideal of  if  is the only

prime ideal containing .

Example 3.4
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In the lattice shown in Fig. 1, the ideal  is a -primary ideal, where  is the

only prime ideal containing .

The following result is an analog of [3, Theorem 2.4 (2)].

Theorem 3.1

Let  be a lattice. Suppose that  is a -primary ideal of  for some prime ideal  of 

and  is a -primary ideal of  for some prime ideal  of . Then  is a 2-absorbing

primary ideal of .

Proof

Let . Then . Now suppose that  for some

,  and . Then . By Lemma 3.4,

 is a 2-absorbing ideal of . Since , we have .

We show that . Since , we may assume that . As

 and , we conclude that  and . Since  and

, we have .

If  and , then  and we are done. We may assume that . Since

𝐼1 is a 𝑃1-primary ideal and 𝑥 ∉ 𝐼1, we have 𝑦 ∧ 𝑧 ∈ 𝑃1. Since 𝑦 ∈ 𝑃2 and 𝑦 ∧ 𝑧 ∈ 𝑃1, we have

𝑦 ∧ 𝑧 ∈ √𝐼, which is a contradiction. Thus 𝑥 ∈ 𝐼1.

Since 𝐼2 is a 𝑃2-primary ideal of 𝐿 and if 𝑦 ∉ 𝐼2 then 𝑥 ∧ 𝑧 ∈ 𝑃2. Since 𝑥 ∈ 𝑃1 and 𝑥 ∧ 𝑧 ∈ 𝑃1,

we have 𝑥 ∧ 𝑧 ∈ √𝐼, which is a contradiction. Thus 𝑦 ∈ 𝐼2. Hence 𝑥 ∧ 𝑦 ∈ 𝐼.  □

Theorem 3.2

Let 𝐼 be a proper ideal of a lattice 𝐿 such that √𝐼 is a prime ideal of 𝐿. Then 𝐼 is a 2-absorbing

primary ideal of 𝐿.

Proof

Suppose that 𝑎 ∧ 𝑏 ∧ 𝑐 ∈ 𝐼 for some 𝑎, 𝑏, 𝑐 ∈ 𝐿 and 𝑎 ∧ 𝑏 ∉ 𝐼.

( 𝑎 )  Suppose that 𝑎 ∧ 𝑏 ∉ √𝐼. Since √𝐼 is a prime ideal of 𝐿, 𝑐 ∈ √𝐼 and so 𝑎 ∧ 𝑐 ∈ √𝐼 and

𝑏 ∧ 𝑐 ∈ √𝐼.

( 𝑏 )  Suppose that 𝑎 ∧ 𝑏 ∈ √𝐼. As √𝐼 is a prime ideal, we have either 𝑎 ∈ √𝐼 or 𝑏 ∈ √𝐼.
Hence 𝑎 ∧ 𝑐 ∈ √𝐼 or 𝑏 ∧ 𝑐 ∈ √𝐼. Thus 𝐼 is a 2-absorbing primary ideal of 𝐿.  □

Remark 3.4

However, the converse of Theorem 3.2 need not hold.
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Example 3.5

Consider the ideal 𝐼 = ( 𝑙] of the lattice shown in Fig. 1. Thus √𝐼 = (𝑞] ∩ ( 𝑟] = ( 𝑜]. Here

𝐼 is a 2-absorbing primary ideal. However, 𝑔 ∧ ℎ = 0 ∈ √𝐼, but neither 𝑔 ∈ √𝐼 nor ℎ ∈ √𝐼.
Thus √𝐼 is not a prime ideal of 𝐿.

Theorem 3.3

Let 𝐼 be an ideal of a lattice 𝐿. Then √𝐼 is a prime ideal of 𝐿 if and only if √𝐼 is a primary ideal

of 𝐿.

Proof

Suppose that √𝐼 is a prime ideal of 𝐿. If 𝑎 ∧ 𝑏 ∈ √𝐼 then either 𝑎 ∈ √𝐼 or 𝑏 ∈ √𝐼. As

√𝐼 = √√𝐼, either 𝑎 ∈ √𝐼 or 𝑏 ∈ √√𝐼. Hence √𝐼 is a primary ideal of 𝐿.

Conversely, suppose that √𝐼 is a primary ideal of 𝐿. Let 𝑎 ∧ 𝑏 ∈ √𝐼. As √𝐼 is a primary ideal,

either 𝑎 ∈ √𝐼 or 𝑏 ∈ √√𝐼 = √𝐼. Thus √𝐼 is a prime ideal of 𝐿.  □

Similarly, we can prove the following characterization for 2-absorbing and 2-absorbing

primary ideals of a lattice 𝐿.

Theorem 3.4

Let 𝐼 be an ideal of a lattice 𝐿. Then √𝐼 is a 2-absorbing ideal of 𝐿 if and only if √𝐼 is a 2-

absorbing primary ideal of 𝐿.

Theorem 3.5

Let 𝐼 be a 2-absorbing primary ideal of a lattice 𝐿 and suppose that 𝑥 ∧ 𝑦 ∧ 𝐽 ⊆ 𝐼 for some

𝑥, 𝑦 ∈ 𝐿 and some ideal 𝐽 of 𝐿. If 𝑥 ∧ 𝑦 ∉ 𝐼, then 𝑥 ∧ 𝐽 ⊆ √𝐼 or 𝑦 ∧ 𝐽 ⊆ √𝐼.

Proof

Let 𝑥 ∧ 𝑦 ∉ 𝐼. Suppose that 𝑥 ∧ 𝐽 ⊈ √𝐼 and 𝑦 ∧ 𝐽 ⊈ √𝐼. Then there exist some 𝑗1 and some 𝑗2
in 𝐽 such that 𝑥 ∧ 𝑗1 ∉ √𝐼 and 𝑦 ∧ 𝑗2 ∉ √𝐼. As 𝑥 ∧ 𝑦 ∧ 𝑗1 ∈ 𝐼, we have 𝑦 ∧ 𝑗1 ∈ √𝐼 since 𝐼 is a 2-

absorbing primary ideal. Similarly, 𝑥 ∧ 𝑦 ∧ 𝑗2 ∈ 𝐼 implies 𝑥 ∧ 𝑗2 ∈ √𝐼.

Since 𝑥 ∧ 𝑦 ∧ ( 𝑗1 ∨ 𝑗2 ) ∈ 𝐼 and 𝑥 ∧ 𝑦 ∉ 𝐼, we have either 𝑥 ∧ ( 𝑗1 ∨ 𝑗2 ) ∈ √𝐼 or

𝑦 ∧ ( 𝑗1 ∨ 𝑗2 ) ∈ √𝐼. Suppose that 𝑥 ∧ ( 𝑗1 ∨ 𝑗2 ) ∈ √𝐼. Therefore,

(𝑥 ∧ 𝑗1 ) ∨ (𝑥 ∧ 𝑗2 ) ≤ 𝑥 ∧ ( 𝑗1 ∨ 𝑗2 ) ∈ √𝐼 and so (𝑥 ∧ 𝑗1 ) ∨ (𝑥 ∧ 𝑗2 ) ∈ √𝐼. Hence

𝑥 ∧ 𝑗2 ∈ √𝐼 and 𝑥 ∧ 𝑗1 ∈ √𝐼, which is a contradiction.
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Similarly, if 𝑦 ∧ ( 𝑗1 ∨ 𝑗2 ) ∈ √𝐼 then (𝑦 ∧ 𝑗1 ) ∨ (𝑦 ∧ 𝑗2 ) ∈ √𝐼. Hence 𝑦 ∧ 𝑗1 ∈ √𝐼 and

𝑦 ∧ 𝑗2 ∈ √𝐼, which is a contradiction. Hence 𝑥 ∧ 𝐽 ⊆ √𝐼 or 𝑦 ∧ 𝐽 ⊆ √𝐼.  □

Remark 3.5

The converse of Theorem 3.5 does not hold.

Example 3.6

Consider the ideal 𝐼 = ( 𝑙] of the lattice shown in Fig. 1. Thus √𝐼 = ( 𝑜]. 𝐼 is a 2-absorbing

primary ideal. Consider the ideal 𝐽 = ( 𝑒]. Now, ℎ ∧ 𝑖 ∧ 𝐽 = 𝐽 ⊆ 𝐼, ℎ ∧ 𝐽 = 𝐽 ⊆ 𝐼 and

𝑖 ∧ 𝐽 = 𝐽 ⊆ 𝐼, but ℎ ∧ 𝑖 ∈ 𝐼.

We give a characterization of a 2-absorbing primary ideal, which is an analog of [3,

Theorem 2.19].

Theorem 3.6

Let 𝐼 be a proper ideal of a lattice 𝐿. Then 𝐼 is a 2-absorbing primary ideal if and only if

whenever 𝐼1𝐼2𝐼3 ⊆ 𝐼 for some ideals 𝐼1, 𝐼2, 𝐼3 of 𝐿, then 𝐼1𝐼2 ⊆ 𝐼 or 𝐼1𝐼3 ⊆ √𝐼 or 𝐼2𝐼3 ⊆ √𝐼.

Proof

Let 𝐼 be an ideal of 𝐿 such that if 𝐼1𝐼2𝐼3 ⊆ 𝐼 for some ideals 𝐼1, 𝐼2, 𝐼3 of 𝐿 then 𝐼1𝐼2 ⊆ 𝐼 or

𝐼1𝐼3 ⊆ 𝐼 or 𝐼2𝐼3 ⊆ 𝐼 or 𝐼1𝐼3 ⊆ √𝐼 or 𝐼2𝐼3 ⊆ √𝐼. We show that 𝐼 is a 2-absorbing primary ideal

of 𝐿. Let 𝑎 ∧ 𝑏 ∧ 𝑐 ∈ 𝐼 for 𝑎, 𝑏, 𝑐 ∈ 𝐿. This implies that ( 𝑎] ∧ ( 𝑏] ∧ ( 𝑐] ⊆ 𝐼. Let 𝐼1 = ( 𝑎],
𝐼2 = ( 𝑏] and 𝐼3 = ( 𝑐]. By hypothesis, either 𝐼1𝐼2 ⊆ 𝐼 or 𝐼1𝐼3 ⊆ √𝐼 or 𝐼2𝐼3 ⊆ √𝐼. Hence

either 𝑎 ∧ 𝑏 ∈ 𝐼 or 𝑎 ∧ 𝑐 ∈ √𝐼 or 𝑏 ∧ 𝑐 ∈ √𝐼. Thus 𝐼 is a 2-absorbing primary ideal of 𝐿.

Conversely, suppose that 𝐼 is a 2-absorbing primary ideal. Let 𝐼1𝐼2𝐼3 ⊆ 𝐼 for some ideals

𝐼1, 𝐼2, 𝐼3 of 𝐿. Suppose that 𝐼1𝐼2 ⊈ 𝐼. We show that 𝐼1𝐼3 ⊆ √𝐼 or 𝐼2𝐼3 ⊆ √𝐼. Suppose that

𝐼1𝐼3 ⊈ √𝐼 and 𝐼2𝐼3 ⊈ √𝐼. Then there exist 𝑞1 ∈ 𝐼1 and 𝑞2 ∈ 𝐼2 such that 𝑞1 ∧ 𝐼3 ⊈ √𝐼 and

𝑞2 ∧ 𝐼3 ⊈ √𝐼. As 𝑞1 ∧ 𝑞2 ∧ 𝐼3 ⊆ 𝐼, we have 𝑞1 ∧ 𝑞2 ∈ 𝐼 by Theorem 3.5. Since 𝐼1𝐼2 ⊈ 𝐼, we have

𝑎 ∧ 𝑏 ∉ 𝐼 for some 𝑎 ∈ 𝐼1, 𝑏 ∈ 𝐼2. Since 𝑎 ∧ 𝑏 ∧ 𝐼3 ⊆ 𝐼 and 𝑎 ∧ 𝑏 ∉ 𝐼, we have 𝑎 ∧ 𝐼3 ⊆ √𝐼 or

𝑏 ∧ 𝐼3 ⊆ √𝐼 by Theorem 3.5. We consider three cases.

Case 1: Suppose that 𝑎 ∧ 𝐼3 ⊆ √𝐼 but 𝑏 ∧ 𝐼3 ⊈ √𝐼. Since 𝑞1 ∧ 𝑏 ∧ 𝐼3 ⊆ 𝐼 and 𝑏 ∧ 𝐼3 ⊈ √𝐼 and

𝑞1 ∧ 𝐼3 ⊈ √𝐼, we conclude that 𝑞1 ∧ 𝑏 ∈ 𝐼 by Theorem 3.5. Since (𝑎 ∨ 𝑞1 ) ∧ 𝑏 ∧ 𝐼3 ⊆ 𝐼 and

𝑎 ∧ 𝐼3 ⊆ √𝐼, but 𝑞1 ∧ 𝐼3 ⊈ √𝐼, we conclude that (𝑎 ∨ 𝑞1 ) ∧ 𝐼3 ⊈ √𝐼. Since 𝑏 ∧ 𝐼3 ⊈ √𝐼 and

(𝑎 ∨ 𝑞1 ) ∧ 𝐼3 ⊈ √𝐼, we conclude that (𝑎 ∨ 𝑞1 ) ∧ 𝑏 ∈ 𝐼 by Theorem 3.5. Since

( 𝑎 ∧ 𝑏 ) ∨ (𝑞1 ∧ 𝑏) ≤ (𝑎 ∨ 𝑞1 ) ∧ 𝑏 ∈ 𝐼, we have ( 𝑎 ∧ 𝑏 ) ∨ (𝑞1 ∧ 𝑏) ∈ 𝐼. Thus 𝑞1 ∧ 𝑏 ∈ 𝐼

and 𝑎 ∧ 𝑏 ∈ 𝐼, a contradiction.

Case 2: Suppose that 𝑏 ∧ 𝐼3 ⊆ √𝐼, but 𝑎 ∧ 𝐼3 ⊈ √𝐼.
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Since 𝑎 ∧ 𝑞2 ∧ 𝐼3 ⊆ 𝐼 and 𝑎 ∧ 𝐼3 ⊈ √𝐼 and 𝑞2 ∧ 𝐼3 ⊈ √𝐼, we conclude that 𝑎 ∧ 𝑞2 ∈ 𝐼 by

Theorem 3.5. Since 𝑎 ∧ (𝑏 ∨ 𝑞2 ) ∧ 𝐼3 ⊆ 𝐼 and 𝑏 ∧ 𝐼3 ⊆ √𝐼, but 𝑞2 ∧ 𝐼3 ⊈ √𝐼, we conclude

that (𝑏 ∨ 𝑞2 ) ∧ 𝐼3 ⊈ √𝐼. Since 𝑎 ∧ 𝐼3 ⊈ √𝐼 and (𝑏 ∨ 𝑞2 ) ∧ 𝐼3 ⊈ √𝐼, we conclude that

𝑎 ∧ (𝑏 ∨ 𝑞2 ) ∈ 𝐼 by Theorem 3.5. Since ( 𝑎 ∧ 𝑏 ) ∨ (𝑎 ∧ 𝑞2 ) ≤ 𝑎 ∧ (𝑏 ∨ 𝑞2 ) ∈ 𝐼, we have

( 𝑎 ∧ 𝑏 ) ∨ (𝑎 ∧ 𝑞2 ) ∈ 𝐼. Thus 𝑎 ∧ 𝑞2 ∈ 𝐼 and 𝑎 ∧ 𝑏 ∈ 𝐼, a contradiction.

Case 3: 𝑎 ∧ 𝐼3 ⊆ √𝐼 and 𝑏 ∧ 𝐼3 ⊆ √𝐼.

Since 𝑏 ∧ 𝐼3 ⊆ √𝐼 and 𝑞2 ∧ 𝐼3 ⊈ √𝐼, we conclude that (𝑏 ∨ 𝑞2 ) ∧ 𝐼3 ⊈ √𝐼. Since

𝑞1 ∧ (𝑏 ∨ 𝑞2 ) ∧ 𝐼3 ⊆ 𝐼 and 𝑞1 ∧ 𝐼3 ⊈ √𝐼 and (𝑏 ∨ 𝑞2 ) ∧ 𝐼3 ⊈ √𝐼, we conclude that

𝑞1 ∧ (𝑏 ∨ 𝑞2 ) ∈ 𝐼 by Theorem 3.5. As (𝑞1 ∧ 𝑏) ∨ (𝑞1 ∧ 𝑞2 ) ≤ 𝑞1 ∧ (𝑏 ∨ 𝑞2 ) ∈ 𝐼, we have

(𝑞1 ∧ 𝑏) ∨ (𝑞1 ∧ 𝑞2 ) ∈ 𝐼. Hence 𝑏 ∧ 𝑞1 ∈ 𝐼. Since 𝑎 ∧ 𝐼3 ⊆ √𝐼 and 𝑞1 ∧ 𝐼3 ⊈ √𝐼, we conclude

that (𝑎 ∨ 𝑞1 ) ∧ 𝐼3 ⊈ √𝐼. Since (𝑎 ∨ 𝑞1 ) ∧ 𝑞2 ∧ 𝐼3 ⊆ 𝐼 and 𝑞2 ∧ 𝐼3 ⊈ √𝐼 and

(𝑎 ∨ 𝑞1 ) ∧ 𝐼3 ⊈ √𝐼, we conclude that (𝑎 ∨ 𝑞1 ) ∧ 𝑞2 ∈ 𝐼 by Theorem 3.5. As

(𝑎 ∧ 𝑞2 ) ∨ (𝑞1 ∧ 𝑞2 ) ≤ (𝑎 ∨ 𝑞1 ) ∧ 𝑞2 ∈ 𝐼, we have (𝑎 ∧ 𝑞2 ) ∨ (𝑞1 ∧ 𝑞2 ) ∈ 𝐼. Hence

𝑎 ∧ 𝑞2 ∈ 𝐼. Now, since (𝑎 ∨ 𝑞1 ) ∧ (𝑏 ∨ 𝑞2 ) ∧ 𝐼3 ⊆ 𝐼 and (𝑎 ∨ 𝑞1 ) ∧ 𝐼3 ⊈ √𝐼 and

(𝑏 ∨ 𝑞2 ) ∧ 𝐼3 ⊈ √𝐼, we conclude that (𝑎 ∨ 𝑞1 ) ∧ (𝑏 ∨ 𝑞2 ) ∈ 𝐼 by Theorem 3.5. We

conclude that 𝑎 ∧ 𝑏 ∈ 𝐼, a contradiction. Hence 𝐼1𝐼3 ⊆ √𝐼 or 𝐼2𝐼3 ⊆ √𝐼.  □

Theorem 3.7

Let 𝑓: 𝐿 → 𝐿′ be a homomorphism of lattices. Then the following statements hold:

(1) If 𝑃′ is a prime ideal of 𝐿′, then 𝑓−1 (𝑃′ )  is a prime ideal of 𝐿.

(2) If 𝑓 is an isomorphism and 𝑃 is a prime ideal of 𝐿, then 𝑓 ( 𝑃 )  is a prime ideal of 𝐿′.

Proof

(1) Let 𝑎 ∧ 𝑏 ∈ 𝑓−1 (𝑃′ )  for 𝑎, 𝑏 ∈ 𝐿. Then 𝑓 ( 𝑎 ∧ 𝑏 ) ∈ 𝑃′. Hence 𝑓 ( 𝑎 ) ∧ 𝑓 ( 𝑏 ) ∈ 𝑃′. This

implies that either 𝑓 ( 𝑎 ) ∈ 𝑃′ or 𝑓 ( 𝑏 ) ∈ 𝑃′. That is either 𝑎 ∈ 𝑓−1 (𝑃′ )  or 𝑏 ∈ 𝑓−1 (𝑃′ ) .

Thus 𝑓−1 (𝑃′ )  is a prime ideal of 𝐿.

(2) Let 𝑎′ ∧ 𝑏′ ∈ 𝑓 ( 𝑃 )  for 𝑎′, 𝑏′ ∈ 𝐿′. Then there exist some 𝑎, 𝑏 ∈ 𝐿 such that 𝑓 ( 𝑎 ) = 𝑎′ and

𝑓 ( 𝑏 ) = 𝑏′. Thus 𝑓 ( 𝑎 ) ∧ 𝑓 ( 𝑏 ) = 𝑎′ ∧ 𝑏′ ∈ 𝑓 ( 𝑃 ) . Thus 𝑓 ( 𝑎 ∧ 𝑏 ) ∈ 𝑓 ( 𝑃 ) . Hence 𝑎 ∧ 𝑏 ∈ 𝑃.

As 𝑃 is a prime ideal of L, either 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃. That is either 𝑓−1 (𝑎′ ) ∈ 𝑃 or 𝑓−1 (𝑏′ ) ∈ 𝑃.

Hence either 𝑎′ ∈ 𝑓 ( 𝑃 )  or 𝑏 ∈ 𝑓 ( 𝑃 ) . Thus 𝑓 ( 𝑃 )  is a prime ideal of 𝐿′.  □

Theorem 3.8

Let 𝑓: 𝐿 → 𝐿′ be a homomorphism of lattices. Then the following statements hold:

(1) If 𝐼′ is an ideal of 𝐿′, then 𝑓−1 (√𝐼′ ) = √𝑓
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(2) If 𝑓 is an isomorphism and 𝐼 is an ideal of 𝐿, then 𝑓 (√𝐼 ) = √𝑓 ( 𝐼 ) .

Proof

(1) Let 𝑃𝑖′ ’s be all prime ideals of 𝐿′ containing 𝐼′ where 𝑖 ∈ 𝛬. Then

𝑓−1 (√𝐼′ ) = 𝑓−1 ( ⋂𝑃𝑖′ ) . Which implies that 𝑓−1 (√𝐼′ ) = ⋂𝑓−1 (𝑃𝑖′ ) . As 𝑃𝑖′ ’s are prime

ideals of 𝐿′, 𝑓−1 (𝑃𝑖′ ) ’s are prime ideals of 𝐿, by Theorem 3.7 (1) and as 𝐼′ ⊆ ⋂𝑃𝑖′ , we have

𝑓−1 ( 𝐼′ ) ⊆ ⋂𝑓−1 (𝑃𝑖′ ) . Which implies that ⋂𝑓−1 (𝑃𝑖′ ) = √𝑓
−1 ( 𝐼′ ) . Hence

𝑓−1 (√𝐼′ ) = √𝑓
−1 ( 𝐼′ ) .

(2) Let 𝑃𝑖’s be all prime ideals of 𝐿 containing 𝐼 where 𝑖 ∈ 𝛬. Then 𝑓 (√𝐼 ) = 𝑓 ( ⋂𝑃𝑖 ) . This

implies that 𝑓 (√𝐼 ) = ⋂𝑓 (𝑃𝑖 ) . As 𝑃𝑖’s are prime ideals of 𝐿, 𝑓 (𝑃𝑖 ) ’s are prime ideals of

𝐿′, by Theorem 3.7 (2) and as 𝐼 ⊆ ⋂𝑃𝑖, we have 𝑓 ( 𝐼 ) ⊆ ⋂𝑓 (𝑃𝑖 ) . Implies that

⋂𝑓 (𝑃𝑖 ) = √𝑓 ( 𝐼 ) . Hence 𝑓 (√𝐼 ) = √𝑓 ( 𝐼 ) .  □

The following result is an analog of [3, Theorem 2.20].

Theorem 3.9

Let 𝑓: 𝐿 → 𝐿′ be a homomorphism of lattices. Then the following statements hold:

(1) If 𝐼′ is a 2-absorbing primary ideal of 𝐿′, then 𝑓−1 ( 𝐼′ )  is a 2-absorbing primary ideal of 𝐿.

(2) If 𝑓 is an isomorphism and 𝐼 is a 2-absorbing primary ideal of 𝐿, then 𝑓 ( 𝐼 )  is a 2-

absorbing primary ideal of 𝐿′.

Proof

( 1 )  Let 𝑎, 𝑏, 𝑐 ∈ 𝐿 such that 𝑎 ∧ 𝑏 ∧ 𝑐 ∈ 𝑓−1 ( 𝐼′ ) . Then

𝑓 ( 𝑎 ∧ 𝑏 ∧ 𝑐) = 𝑓 ( 𝑎 ) ∧ 𝑓 ( 𝑏 ) ∧ 𝑓 ( 𝑐 ) ∈ 𝐼′. As 𝐼′ is 2-absorbing primary ideal, we have

either 𝑓 ( 𝑎 ) ∧ 𝑓 ( 𝑏 ) ∈ 𝐼′ or 𝑓 ( 𝑎 ) ∧ 𝑓 ( 𝑐 ) ∈ √𝐼′ or 𝑓 ( 𝑏 ) ∧ 𝑓 ( 𝑐 ) ∈ √𝐼′. That is either

𝑎 ∧ 𝑏 ∈ 𝑓−1 ( 𝐼′ )  or 𝑎 ∧ 𝑐 ∈ 𝑓−1 (√𝐼′ )  or 𝑏 ∧ 𝑐 ∈ 𝑓−1 (√𝐼′ ) . As 𝑓−1 (√𝐼′ ) = √𝑓
−1 ( 𝐼′ ) , by

Theorem 3.8 (1), 𝑎 ∧ 𝑏 ∈ 𝑓−1 ( 𝐼′ )  or 𝑎 ∧ 𝑐 ∈ √𝑓
−1 ( 𝐼′ )  or 𝑏 ∧ 𝑐 ∈ √𝑓

−1 ( 𝐼′ ) . Thus 𝑓−1 ( 𝐼′ )  is

a 2-absorbing primary ideal of 𝐿.

( 2 )  Let 𝑎′, 𝑏′, 𝑐′ ∈ 𝐿′ and 𝑎′ ∧ 𝑏′ ∧ 𝑐′ ∈ 𝑓 ( 𝐼 ) . Then there exist 𝑎, 𝑏, 𝑐 ∈ 𝐿 such that 𝑓 ( 𝑎 ) = 𝑎′,
𝑓 ( 𝑏 ) = 𝑏′, 𝑓 ( 𝑐 ) = 𝑐′ and 𝑓 ( 𝑎 ) ∧ 𝑓 ( 𝑏 ) ∧ 𝑓 ( 𝑐 ) = 𝑎′ ∧ 𝑏′ ∧ 𝑐′ ∈ 𝑓 ( 𝐼 ) . That is

𝑓 ( 𝑎 ) ∧ 𝑓 ( 𝑏 ) ∧ 𝑓 ( 𝑐 ) ∈ 𝑓 ( 𝐼 ) . Hence 𝑎 ∧ 𝑏 ∧ 𝑐 ∈ 𝐼. As 𝐼 is a 2-absorbing primary ideal, we

have either 𝑎 ∧ 𝑏 ∈ 𝐼 or 𝑎 ∧ 𝑐 ∈ √𝐼 or 𝑏 ∧ 𝑐 ∈ √𝐼. That is either 𝑓−1 (𝑎′ ∧ 𝑏′ ) ∈ 𝐼 or

𝑓−1 (𝑎′ ∧ 𝑐′ ) ∈ √𝐼 or 𝑓−1 (𝑏′ ∧ 𝑐′ ) ∈ 𝐼. Thus either 𝑎′ ∧ 𝑏′ ∈ 𝑓 ( 𝐼 )  or 𝑎′ ∧ 𝑐′ ∈ 𝑓 (√𝐼 )  or

𝑏′ ∧ 𝑐′ ∈ 𝑓 (√𝐼 ) . As 𝑓 (√𝐼 ) = √𝑓 ( 𝐼 ) , by Theorem 3.8 (2) 𝑎′ ∧ 𝑏′ ∈ 𝑓 ( 𝐼 )  or 𝑎′ ∧ 𝑐′ ∈ √𝑓 ( 𝐼 )

or 𝑏′ ∧ 𝑐′ ∈ √𝑓 ( 𝐼 ) . Hence 𝑓 ( 𝐼 )  is a 2-absorbing ideal of 𝐿′.  □
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4. 2-absorbing primary ideals in product lattices

In this section we prove some results on 2-absorbing primary ideals in product lattices.

The notion of the product lattice is from Gratzer [9, p. 27].

The proof of the following theorem is obvious.

Theorem 4.1

Let 𝐿 = 𝐿1×𝐿2, where 𝐿1 and 𝐿2 are lattices. Let 𝑃𝑖’s and 𝑄𝑗’s be ideals of 𝐿1 and 𝐿2
respectively, where 𝑖 ∈ 𝛬1 and 𝑗 ∈ 𝛬2. Then ⋂ (𝑃𝑖×𝑄𝑗 ) = ⋂𝑃𝑖× ⋂𝑄𝑗.

Theorem 4.2

Let 𝐿 = 𝐿1×𝐿2, where each 𝐿𝑖, ( 𝑖 = 1, 2 )  is a lattice with 1. Then the following hold:

(1) If 𝐼1 is an ideal of 𝐿1, then √𝐼1×𝐿2 = √𝐼1 ×𝐿2.

(2) If 𝐼2 is an ideal of 𝐿2, then √𝐿1×𝐼2 = 𝐿1×√𝐼2 .

Proof

(1) Let ( 𝑎, 𝑏 ) ∈ √𝐼1×𝐿2 . Thus ( 𝑎, 𝑏 ) ∈ ⋂𝑖 ∈ 𝛬 (𝑃𝑖×𝐿2 ) , where and 𝑃𝑖’s are all prime

ideals of a lattice 𝐿1 containing 𝐼1. Thus 𝑎 ∈ ⋂𝑖 ∈ 𝛬 𝑃𝑖, 𝑏 ∈ 𝐿2. Thus 𝑎 ∈ √𝐼1 , 𝑏 ∈ 𝐿2 and so
( 𝑎, 𝑏 ) ∈ √𝐼1 ×𝐿2.

If ( 𝑎, 𝑏 ) ∈ √𝐼1 ×𝐿2 then 𝑎 ∈ √𝐼1 , 𝑏 ∈ 𝐿2. Thus 𝑎 ∈ ⋂𝑖 ∈ 𝛬 𝑃𝑖, 𝑏 ∈ 𝐿2 and so
( 𝑎, 𝑏 ) ∈ ⋂𝑖 ∈ 𝛬 (𝑃𝑖×𝐿2 ) . i.e.  ( 𝑎, 𝑏 ) ∈ √𝐼1×𝐿2 . Hence √𝐼1×𝐿2 = √𝐼1 ×𝐿2.

(2) Proof is similar to that of (1).  □

The following characterization gives a relation between a 2-absorbing primary ideal of a

product of two lattices and a 2-absorbing primary ideal of one of the lattice in this

product.

Theorem 4.3

Let 𝐿 = 𝐿1×𝐿2, where 𝐿1 and 𝐿2 are lattices. Let 𝐼 be a proper ideal of 𝐿1. Then 𝐼×𝐿2 is a 2-

absorbing primary ideal if and only if 𝐼 is a 2-absorbing primary ideal of 𝐿1.

Proof

Suppose that 𝐼×𝐿2 is a 2-absorbing ideal of 𝐿. Let 𝑎 ∧ 𝑏 ∧ 𝑐 ∈ 𝐼 for 𝑎, 𝑏, 𝑐 ∈ 𝐿1. Then
( 𝑎 ∧ 𝑏 ∧ 𝑐, 𝑥 ) ∈ 𝐼×𝐿2 for 𝑥 ∈ 𝐿2. As 𝐼×𝐿2 is a 2-absorbing primary ideal of 𝐿, either
( 𝑎 ∧ 𝑏, 𝑥 ) ∈ 𝐼×𝐿2 or ( 𝑎 ∧ 𝑐, 𝑥 ) ∈ √𝐼×𝐿2  or ( 𝑏 ∧ 𝑐, 𝑥 ) ∈ √𝐼×𝐿2 . Then either
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( 𝑎 ∧ 𝑏, 𝑥 ) ∈ 𝐼×𝐿2 or ( 𝑎 ∧ 𝑐, 𝑥 ) ∈ √𝐼 ×𝐿2 or ( 𝑏 ∧ 𝑐, 𝑥 ) ∈ √𝐼 ×𝐿2, by Theorem 4.2. Hence

either 𝑎 ∧ 𝑏 ∈ 𝐼 or 𝑎 ∧ 𝑐 ∈ √𝐼 or 𝑏 ∧ 𝑐 ∈ √𝐼.

Conversely, suppose that 𝐼 is a 2-absorbing primary ideal of 𝐿1. Let ( 𝑎 ∧ 𝑏 ∧ 𝑐, 𝑥 ) ∈ 𝐼 for

𝑎, 𝑏, 𝑐 ∈ 𝐿1 and 𝑥 ∈ 𝐿2. As 𝐼 is a 2-absorbing primary ideal of 𝐿1, either ( 𝑎 ∧ 𝑏, 𝑥 ) ∈ 𝐼×𝐿2 or

( 𝑎 ∧ 𝑐, 𝑥 ) ∈ √𝐼 ×𝐿2 or ( 𝑏 ∧ 𝑐, 𝑥 ) ∈ √𝐼 ×𝐿2. That is either ( 𝑎 ∧ 𝑏, 𝑥 ) ∈ 𝐼×𝐿2 or

( 𝑎 ∧ 𝑐, 𝑥 ) ∈ √𝐼×𝐿2  or ( 𝑏 ∧ 𝑐, 𝑥 ) ∈ √𝐼×𝐿2 , by Theorem 4.2.  □

Theorem 4.4

Let 𝐿 = 𝐿1×𝐿2, where 𝐿1 and 𝐿2 are lattices. Let 𝐼1 and 𝐼2 be proper ideals of 𝐿1 and 𝐿2
respectively. If 𝐼 = 𝐼1×𝐼2 is a 2-absorbing primary ideal of 𝐿 then 𝐼1 and 𝐼2 are 2-absorbing

primary ideals of 𝐿1 and 𝐿2 respectively.

Proof

Let 𝑎 ∧ 𝑏 ∧ 𝑐 ∈ 𝐼1 for some 𝑎, 𝑏, 𝑐 ∈ 𝐿1. Then ( 𝑎 ∧ 𝑏 ∧ 𝑐, 𝑥 ) ∈ 𝐼1×𝐼2 for 𝑥 ∈ 𝐼2. As 𝐼1×𝐼2 is a 2-

absorbing primary ideal, either ( 𝑎 ∧ 𝑏, 𝑥 ) ∈ 𝐼1×𝐼2 or ( 𝑎 ∧ 𝑐, 𝑥 ) ∈ √𝐼1×𝐼2  or

( 𝑏 ∧ 𝑐, 𝑥 ) ∈ √𝐼1×𝐼2 , that is either ( 𝑎 ∧ 𝑏, 𝑥 ) ∈ 𝐼1×𝐼2 or ( 𝑎 ∧ 𝑐, 𝑥 ) ∈ √𝐼1 ×√𝐼2  or

( 𝑏 ∧ 𝑐, 𝑥 ) ∈ √𝐼1 ×√𝐼2 , by Theorem 4.2. Hence 𝑎 ∧ 𝑏 ∈ 𝐼1 or 𝑎 ∧ 𝑐 ∈ √𝐼1  or 𝑏 ∧ 𝑐 ∈ √𝐼1 . Thus

𝐼1 is a 2-absorbing primary ideal of 𝐿1. Similarly, we can show that 𝐼2 is a 2-absorbing

primary ideal of 𝐿2.  □

Remark 4.1

The converse of Theorem 4.4 need not hold.

Example 4.1

Consider the lattices 𝐿1, 𝐿2 and 𝐿 = 𝐿1×𝐿2 as shown in Fig. 2. Consider the ideals

𝐼1 = {0 } , 𝐼2 = {0 }  of the lattices 𝐿1 and 𝐿2 respectively. Thus 𝐼1×𝐼2 = { ( 0, 0 ) }  and

√𝐼1×𝐼2 = { ( 0, 0 ) } . The ideals 𝐼1 and 𝐼2 are 2-absorbing primary ideals of 𝐿1 and 𝐿2
respectively. But for ( 𝑎, 1 ) ∧ ( 1, 0 ) ∧ ( 𝑏, 1 ) = ( 0, 0 ) ∈ 𝐼1×𝐼2, neither

( 𝑎, 1 ) ∧ ( 1, 0 ) = ( 𝑎, 0 ) ∈ 𝐼1×𝐼2 nor ( 𝑎, 1 ) ∧ ( 𝑏, 1 ) = ( 0, 1 ) ∈ 𝐼1×𝐼2 nor

( 1, 0 ) ∧ ( 𝑏, 1 ) = ( 𝑏, 0 ) ∈ 𝐼1×𝐼2. Thus 𝐼1×𝐼2 is not a 2-absorbing primary ideal of 𝐿.

Now we give a characterization of a 2-absorbing primary ideal in a product of two

lattices, which is an analog of [3, Theorem 2.23].
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Fig. 2.

Theorem 4.5

Let 𝐿 = 𝐿1×𝐿2, where 𝐿1 and 𝐿2 are bounded lattices. Let 𝐽 be a proper ideal of 𝐿. Then the

following statements are equivalent:

(1) 𝐽 is a 2-absorbing primary ideal of 𝐿.

(2) Either 𝐽 = 𝐼1×𝐿2 for some 2-absorbing primary ideal 𝐼1 of 𝐿1 or 𝐽 = 𝐿1×𝐼2 for some 2-

absorbing primary ideal 𝐼2 of 𝐿2 or 𝐽 = 𝐼1×𝐼2 for some primary ideal 𝐼1 of 𝐿1 and some

primary ideal 𝐼2 of 𝐿2.

Proof

( 1 ) ⟹ ( 2 ) . Suppose that 𝐽 is a 2-absorbing primary ideal of 𝐿. Then 𝐽 = 𝐼1×𝐼2 for some

ideal 𝐼1 of 𝐿1 and some ideal 𝐼2 of 𝐿2.

Case 1: If 𝐼2 = 𝐿2 then 𝐼1 ≠ 𝐿1. Thus 𝐽 = 𝐼1×𝐿2. Let 𝑎 ∧ 𝑏 ∧ 𝑐 ∈ 𝐼1 for some 𝑎, 𝑏, 𝑐 ∈ 𝐿1. Then

(𝑎 ∧ 𝑏 ∧ 𝑐, 𝑥 ∧ 𝑦 ∧ 𝑧 ) ∈ 𝐼1×𝐿2, where 𝑥, 𝑦, 𝑧 ∈ 𝐿2. As 𝐽 is a 2-absorbing primary ideal, we

have either (𝑎 ∧ 𝑏, 𝑥 ∧ 𝑦 ) ∈ 𝐼1×𝐿2 or ( 𝑎 ∧ 𝑐, 𝑥 ∧ 𝑧 ) ∈ √𝐼1×𝐿2  or (𝑏 ∧ 𝑐, 𝑦 ∧ 𝑧 ) ∈ √𝐼1×𝐿2 .

By Lemma 3.1, either (𝑎 ∧ 𝑏, 𝑥 ∧ 𝑦 ) ∈ 𝐼1×𝐿2 or ( 𝑎 ∧ 𝑐, 𝑥 ∧ 𝑧 ) ∈ √𝐼1 ×𝐿2 or

(𝑏 ∧ 𝑐, 𝑦 ∧ 𝑧 ) ∈ √𝐼1 ×𝐿2. Thus 𝐼1 is a 2-absorbing primary ideal of 𝐿1.

Case 2: If 𝐼1 = 𝐿1 then 𝐼2 ≠ 𝐿2. Thus 𝐽 = 𝐿1×𝐼2. Similarly, as in previous case, 𝐼2 is a 2-

absorbing primary ideal of 𝐿2.

Case 3: Now if 𝐼1 ≠ 𝐿1 and 𝐼2 ≠ 𝐿2 then 𝐽 = 𝐼1×𝐼2. That is √𝐽 = √𝐼1 ×√𝐼2 . On the contrary,

suppose that 𝐼1 is not a primary ideal of 𝐿1. Then there are 𝑎, 𝑏 ∈ 𝐿1 such that 𝑎 ∧ 𝑏 ∈ 𝐼1
but neither 𝑎 ∈ 𝐼1 nor 𝑏 ∈ √𝐼1 . Let 𝑥 = ( 𝑎, 1 ) , 𝑦 = ( 1, 0 )  and 𝑐 = ( 𝑏, 1 ) . Then

𝑥 ∧ 𝑦 ∧ 𝑐 = ( 𝑎 ∧ 𝑏, 0 ) ∈ 𝐽 but neither 𝑥 ∧ 𝑦 = ( 𝑎, 0 ) ∈ 𝐽 nor 𝑥 ∧ 𝑐 = ( 𝑎 ∧ 𝑏, 1 ) ∈ √𝐽 nor

𝑦 ∧ 𝑐 = ( 𝑏, 0 ) ∈ √𝐽, which is a contradiction. Thus 𝐼1 is a primary ideal of 𝐿1. Suppose
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that 𝐼2 is not a primary ideal of 𝐿2. Then there exist 𝑑, 𝑒 ∈ 𝐿2 such that 𝑑 ∧ 𝑒 ∈ 𝐼2 but

neither 𝑑 ∈ 𝐼2 nor 𝑒 ∈ √𝐼2 . Let 𝑥 = ( 1, 𝑑 ) , 𝑦 = ( 0, 1 )  and 𝑐 = ( 1, 𝑒 ) . Then

𝑥 ∧ 𝑦 ∧ 𝑐 = ( 0, 𝑑 ∧ 𝑒 ) ∈ 𝐽 but neither 𝑥 ∧ 𝑦 = ( 0, 𝑑 ) ∈ 𝐽 nor 𝑥 ∧ 𝑐 = ( 1, 𝑑 ∧ 𝑒 ) ∈ √𝐽 nor

𝑦 ∧ 𝑐 = ( 0, 𝑒 ) ∈ √𝐽, which is a contradiction. Thus 𝐼2 is a primary ideal of 𝐿2.

( 2 ) ⟹ ( 1 ) . Suppose that 𝐽 = 𝐼1×𝐿2 for some 2-absorbing primary ideal 𝐼1 of 𝐿1. Let

(𝑎1, 𝑏1 ) ∧ (𝑎2, 𝑏2 ) ∧ (𝑎3, 𝑏3 ) ∈ 𝐼1×𝐿2. Then 𝑎1 ∧ 𝑎2 ∧ 𝑎3 ∈ 𝐼1. As 𝐼1 is 2-absorbing

primary ideal of 𝐿1, we have either 𝑎1 ∧ 𝑎2 ∈ 𝐼1 or 𝑎1 ∧ 𝑎3 ∈ √𝐼1  or 𝑎2 ∧ 𝑎3 ∈ √𝐼1 . That is

either (𝑎1, 𝑏1 ) ∧ (𝑎2, 𝑏2 ) ∈ 𝐼1×𝐿2 or (𝑎1, 𝑏1 ) ∧ (𝑎3, 𝑏3 ) ∈ √𝐼1 ×𝐿2 or

(𝑎2, 𝑏2 ) ∧ (𝑎3, 𝑏3 ) ∈ √𝐼1 ×𝐿2. Hence either (𝑎1, 𝑏1 ) ∧ (𝑎2, 𝑏2 ) ∈ 𝐼1×𝐿2 or

(𝑎1, 𝑏1 ) ∧ (𝑎3, 𝑏3 ) ∈ √𝐼1×𝐿2  or (𝑎2, 𝑏2 ) ∧ (𝑎3, 𝑏3 ) ∈ √𝐼1×𝐿2  by Theorem 4.2. Thus

𝐽 = 𝐼1×𝐿2 is a 2-absorbing primary ideal of 𝐿. Similarly 𝐿1×𝐼2 is a 2-absorbing primary

ideal of 𝐿. Suppose that 𝐽 = 𝐼1×𝐼2 for some primary ideal 𝐼1 of 𝐿1 and some primary ideal

𝐼2 of 𝐿2. Then 𝑃 = 𝐼1×𝐿2 and 𝑄 = 𝐿1×𝐼2 are primary ideals of 𝐿. Hence 𝑃 ∩ 𝑄 = 𝐼1×𝐼2.

Thus 𝐽 = 𝐼1×𝐼2 is a 2-absorbing primary ideal, by Theorem 3.1.  □

The following theorem is a generalization of Theorem 4.5, which is an analog of [3,

Theorem 2.24].

Theorem 4.6

Let 𝐿 = 𝐿1×𝐿2 ⋯ ×𝐿𝑛, where 2 ≤ 𝑛 < ∞, and 𝐿1, 𝐿2, … , 𝐿𝑛 are lattices. Let 𝐽 be a proper ideal

of 𝐿. Then the following statements are equivalent.

(1) 𝐽 is a 2-absorbing primary ideal of 𝐿.

(2) Either 𝐽 = ∏𝑡 = 1
𝑛 𝐼𝑡 such that for some 𝑘 ∈ {1, 2, … , 𝑛 } , 𝐼𝑘 is a 2-absorbing primary ideal

of 𝐿𝑘, and 𝐼𝑡 = 𝐿𝑡 for every 𝑡 ∈ {1, 2, … , 𝑛 } ∖ {𝑘 }  or 𝐽 = ∏𝑡 = 1
𝑛 𝐼𝑡 such that for some

𝑘,𝑚 ∈ {1, 2, … , 𝑛 } , 𝐼𝑘 is a primary ideal of 𝐿𝑘, 𝐼𝑚 is a primary ideal of 𝐿𝑚, and 𝐼𝑡 ≠ 𝐿𝑡 for

every 𝑡 ∈ {1, 2, … , 𝑛 } ∖ {𝑘,𝑚} .

Proof

( 1 ) ⇔ ( 2 )  We prove this theorem by induction on 𝑛. Assume 𝑛 = 2. Then by Theorem

4.5, the result holds. Thus suppose that 3 ≤ 𝑛 < ∞ and assume that the result is valid

when 𝐾 = 𝐿1×𝐿2 ⋯ 𝐿𝑛 − 1. Now we prove the result when 𝐿 = 𝐾×𝐿𝑛. By Theorem 4.5, 𝐽 is
a 2-absorbing primary ideal of 𝐿 if and only if either 𝐽 = 𝐴×𝐿𝑛 for some 2-absorbing

primary ideal 𝐴 of 𝐾 or 𝐽 = 𝐾×𝐴𝑛 for some 2-absorbing primary ideal 𝐴𝑛 of 𝐿𝑛 or

𝐽 = 𝐴×𝐴𝑛 for some primary ideal 𝐴 of 𝐾 and some primary ideal 𝐴𝑛 of 𝐿𝑛. Now observe

that a proper ideal 𝐵 of 𝐾 is a primary ideal of 𝐾 if and only if 𝐵 = ∏𝑡 = 1
𝑛 − 1 𝐼𝑡 such that for

some 𝑘 ∈ {1, 2, … , 𝑛 − 1 } , 𝐼𝑘 is a primary ideal of 𝐿𝑘, and 𝐼𝑡 ≠ 𝐿𝑡 for every

𝑡 ∈ {1, 2, … , 𝑛 − 1 } ∖ {𝑘,𝑚} .  □Typesetting math: 26%
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