SPRINGER LINK

Log in

≡ Menu

Q Search

🗀 Cart

Home > Data Analytics and Learning > Conference paper

Urban LULC Change Detection and Mapping Spatial Variations of Aurangabad City Using IRS LISS-III Temporal Datasets and Supervised Classification Approach

| Conference paper | First Online: 05 November 2018

pp 369-386 | Cite this conference paper

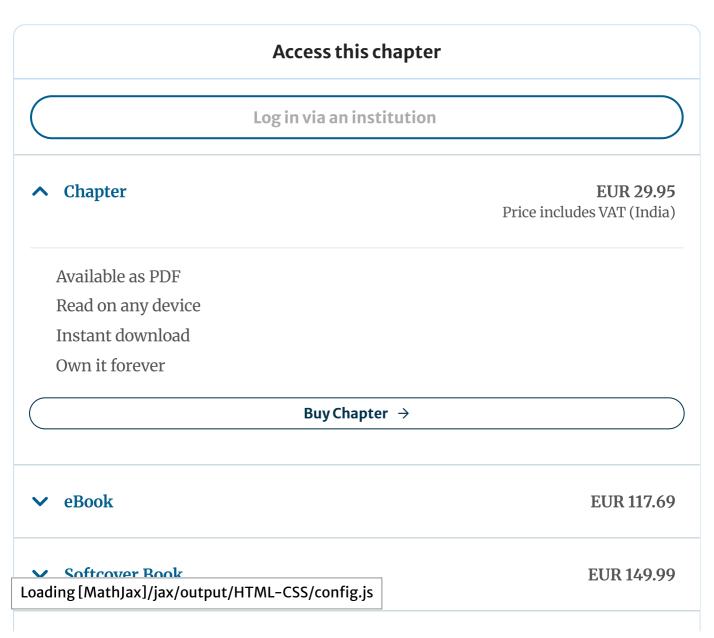
Data Analytics and Learning

Ajay D. Nagne , Amol D. Vibhute, Rajesh K. Dhumal, Karbhari V. Kale & S. C. Mehrotra

Part of the book series: Lecture Notes in Networks and Systems ((LNNS, volume 43))

811 Accesses **5** Citations

Abstract


An accurate mapping of urban LULC is essential for urban development and planning.
Although urban area represents a little portion of Earth surface, which brings an
unbalanced impact on its surrounding areas. However urban LULC mapping and change

Loading [MathJax]/jax/output/HTML-CSS/config.js

Recent advances in Geospatial

technology can be used to map built-up areas for detecting the urban growth patterns. In this work IRS LISS-III sensors image data of 2003, 2009, and 2015 of same season were used. The LULC mapping and change detection was carried out by four supervised classifier namely Maximumlikelihood classifier (MLC), Mahalanobis-Distance (MD), Minimum-Distance-to-Means (MDM), and Parallelepiped classifier (PC). Obtained results were examined by considering the efficiency of each classifier to accurately map the identified LULC classes. It is observed that, MLC has given the highest overall accuracy of 73.07, 83.51, and 93.43% with kappa coefficient of 0.64, 0.78, and 0.90 in 2003, 2009, and 2015 respectively, which are superior among others; hence we have used classified layer obtained from MLC for further change detection and analysis from 2003 to 2015.

1 This is a preview of subscription content, log in via an institution **1** to check access.

Tax calculation will be finalised at checkout Purchases are for personal use only

Institutional subscriptions →

References

1. Islam, K., Jashimuddin, M., Nath, B., Nath, T.K.: Land use classification and change detection by using multi-temporal remotely sensed imagery: the case of Chunati wildlife sanctuary, Bangladesh. Egypt. J. Remote Sens. Space Sci. (2017)

Google Scholar

2. Rawat, J.S., Kumar, M.: Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. **18**(1), 77–84 (2015)

Article Google Scholar

3. Reis, S.: Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors **8**(10), 6188–6202 (2008)

Article Google Scholar

4. Lu, D., Mausel, P., Brondízio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. **25**(12), 2365–2401 (2004). https://doi.org/10.1080/0143116031000139863

Article Google Scholar

5. Nagne, A.D., Dhumal, R.K., Vibhute, A.D., Rajendra, Y.D., Kale, K.V., Mehrotra, S.C.: Loading [MathJax]/jax/output/HTML-CSS/config.js | Imping using RS and GIS approach: a case

study of Aurangabad, MS, India. In: 2014 Annual IEEE India Conference (INDICON), pp. 1–6. IEEE (2014)

Google Scholar

- 6. Balpande, U.S.: Ground_Water Information of Aurangabad District Maharashtra, Ministry of Water Resources Central Ground Water Board, Gov. of India, 1791/DBR/201. http://cgwb.gov.in/District_Profile/Maharashtra/Aurangabad.pdf
- 7. Nagne, A.D., Dhumal, R.K., Vibhute, A.D., Gaikwad, S., Kale, K., Mehrotra, S.: Land use land cover change detection by different supervised classifiers on LISS-III temporal datasets. In: 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM) (2017)

Google Scholar

- 8. Resourcesat—1 Data User's Handbook, National Remote Sensing Agency, Department Of Space, Govt. Of India NrsaBalanagar, Hyderabad—500037, A.P. India. http://Bhuvan.Nrsc.Gov.In/Bhuvan/Pdf/Resourcesat-1_Handbook.Pdf
- **9.** Hebbara, R., SeshaSaib, M.V.R.: Comparison of LISS-IV MX AND LISS-III+ LISS-IV merged data for classification of crops. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. (ISPRS Technical Commission VIII Symposium, 09–12 December 2014, Hyderabad, India) **II**(8) (2014)

Google Scholar

10. Vibhute, A.D., Dhumal, R.K., Nagne, A.D., Rajendra, Y.D., Kale, K.V., Mehrotra, S.C.: Analysis, classification, and estimation of pattern for land of Aurangabad region using high-resolution satellite image. In: Proceedings of the Second International Conference on Computer and Communication Technologies, pp. 413–427. Springer, New Delhi (2016)

Google Scholar

11. Govender, M., Chetty, K., Bulcock, H.: A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 33(2) (2007). ISSN 0378-4738. Water SA (on-line). ISSN 1816-7950. http://www.wrc.org.za

12. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T.: Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. **50**(9), 1250–1265 (2012)

Article Google Scholar

13. Murtaza, K.O., Romshoo, S.A.: Determining the suitability and accuracy of various statistical algorithms for satellite data classification. Int. J. Geomat. Geosci. **4**(4), 585 (2014)

Google Scholar

14. Gao, J.: Digital Analysis of Remotely Sensed Imagery. McGraw-Hill Professional (2008)

Google Scholar

15. Banko, G.: A review of assessing the accuracy of classifications of remotely sensed data and of methods including remote sensing data in forest inventory (1998)

Google Scholar

16. Sinha, S., Sharma, L.K., Nathawat, M.S.: Improved land-use/land-cover classification of semi-arid deciduous forest landscape using thermal remote sensing. Egypt. J. Remote Sens. Space Sci. **18**(2), 217–233 (2015)

Article Google Scholar

17. Jayanth, J., Kumar, T.A., Koliwad, S., Krishnashastry, S.: Identification of land cover changes in the coastal area of Dakshina Kannada district, South India during the year 2004–2008. Egypt. J. Remote Sens. Space Sci. **19**(1), 73–93 (2016)

Article Google Scholar

18. Butt, A., Shabbir, R., Ahmad, S.S., Aziz, N.: Land use change mapping and analysis using Remote Sensing and GIS: a case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. **18**(2), 251–259 (2015)

Article Google Scholar

19. Beuchle, R., Grecchi, R.C., Shimabukuro, Y.E., Seliger, R., Eva, H.D., Sano, E., Achard, F.: Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. **58**, 116–127 (2015)

Article Google Scholar

Acknowledgements

Author(s) would like to acknowledge, UGC-BSR Fellowships, DST_FIST and UGC-SAP(II) DRS Phase-I and Phase-II F.No.-3-42/2009 & 4-15/2015/D R S -II for Laboratory Facility to Department of CS & IT, Dr. B.A.M.University, Aurangabad (MS), INDIA.

Author information

Authors and Affiliations

Department of CS & IT, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India

Ajay D. Nagne, Amol D. Vibhute, Rajesh K. Dhumal, Karbhari V. Kale & S. C. Mehrotra

Corresponding author

Editor information

Editors and Affiliations

Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India P. Nagabhushan

Department of Computer Science and Engineering, CBCS Education, University of Mysore, Mysuru, Karnataka, India

D. S. Guru

Department of Studies in Computer Science, Mangalore University, Mangalore, Karnataka, India

B. H. Shekar

Department of Information Science and Engineering, Maharaja Institute of Technology, Belawadi, Karnataka, India

Y. H. Sharath Kumar

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Nagne, A.D., Vibhute, A.D., Dhumal, R.K., Kale, K.V., Mehrotra, S.C. (2019). Urban LULC Change Detection and Mapping Spatial Variations of Aurangabad City Using IRS LISS-III Temporal Datasets and Supervised Classification Approach. In: Nagabhushan, P., Guru, D., Shekar, B., Kumar, Y. (eds) Data Analytics and Learning. Lecture Notes in Networks and

Loading [MathJax]/jax/output/HTML-CSS/config.js org/10.1007/978-981-13-2514-4_31

6/16/24, 1:45 PM

.RIS ± .ENW ± .BIB ±

DOI Published Publisher Name

https://doi.org/10.1007/9 05 November 2018 Springer, Singapore

78-981-13-2514-4_31

Print ISBN Online ISBN eBook Packages

978-981-13-2513-7 978-981-13-2514-4 Intelligent Technologies

and Robotics

Intelligent Technologies

and Robotics (R0)

Publish with us

Policies and ethics [2