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Abstract. The aim of this paper is to develop a monotone iterative technique by in-

troducing upper and lower solutions to Riemann-Liouville fractional differential equations

with deviating arguments and integral boundary conditions. As an application of this

technique, existence and uniqueness results are obtained.

1. Introduction

Differential equations with deviating arguments arise in various branches of sci-
ence, engineering, economics and so on (see [4, 8] and the references therein). Many
researchers have studied the existence, uniqueness, continuous dependence, and sta-
bility of solutions of nonlinear fractional differential equations (see [1, 2, 3, 5, 6, 7,
10, 11, 12, 15, 16, 17, 19, 20, 25, 30, 33, 34]). The monotone iterative technique [23]
combined with the method of upper and lower solutions provides an effective mecha-
nism to prove constructive existence results for nonlinear differential equations. The
monotone technique is an interesting and powerful tool to deal with existence results
for fractional differential equations. In 2008, the monotone technique for fractional
differential equations with initial conditions was first developed by Lakshmikan-
tham and Vatsala [25]. Later, a series of papers appeared in the literature to prove
existence and uniqueness of solution of various problems with initial conditions,
boundary conditions, integral boundary conditions, nonlinear boundary conditions,
and periodic boundary conditions for fractional differential equations, (see, for ex-
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ample [13, 14, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 35, 37, 38, 39, 40, 41, 42, 43]
and the references therein). However, work on fractional differential equations with
deviating argument is rare. In this paper, we study the following problem for the
Riemann-Liouville fractional differential equation with a deviating argument and
integral boundary conditions:

(1.1)

{
Dα

0+u(t) = f (t, u(t), u(θ(t))) , t ∈ J = [0, T ],

u(0) = λ
∫ T

0
u(s)ds+ d, d ∈ R,

where f ∈ C
(
J × R2,R

)
, θ ∈ C (J, J) , θ(t) ≤ t, t ∈ J, λ ≥ 0, 0 < α < 1. The

paper is organized as follows. In Section 2, we introduce some useful definitions
and basic lemmas. In Section 3, we study the uniqueness of a solution for the
problem (1.1) using the Banach fixed point theorem. In Section 4, we develop
the monotone method and apply it to obtain existence and uniqueness results for
Riemann-Liouville fractional differential equations with deviating arguments and
integral boundary conditions.

2. Preliminaries

For the reader’s convenience, we present some necessary definitions and lemmas
from the theory of fractional calculus. In addition, we prove some basic results
which are useful for further discussion.

Definition 2.1.([21, 36]) For α > 0, the integral

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds

is called the Riemann-Liouville fractional integral of order α.

Definition 2.2.([21, 36]) The Riemann-Liouville derivative of order α (n − 1 < α
≤ n) can be written as

Dα
0+u(t) =

(
d

dt

)n (
In−α0+ u(t)

)
=

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u(s)ds, t > 0.

Lemma 2.1.([21]) Let u ∈ Cn[0, T ], α ∈ (n− 1, n) , n ∈ N. Then for t ∈ J,

Iα0+Dα
0+u(t) = u(t)−

n−1∑
k=0

tk

k!
u(k)(0).

Consider the space C1−α (J,R) =
{
u ∈ C ((0, T ],R) : t1−αu ∈ C (J,R)

}
.

Lemma 2.2.([9]) Let m ∈ C1−α(J,R) where for some t1 ∈ (0, T ],

m(t1) = 0 and m(t) ≤ 0 for 0 ≤ t ≤ t1.
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Then it follows that
Dαm(t1) ≥ 0.

Lemma 2.3. Let f ∈ C
(
J × R2,R

)
. A function u ∈ C1−α (J,R) is a solution of

the problem (1.1) if and only if u is a solution of the integral equation

(2.1) u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f (s, u(s), u(θ(s)))ds+ λ

∫ T

0

u(s)ds+ d.

Proof. Assume that u satisfies the problem (1.1). From the first equation of the
problem (1.1) and Lemma 2.1, we have

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f (s, u(s), u(θ(s)))ds+ λ

∫ T

0

u(s)ds+ d.

Conversely, assume that u ∈ C1−α (J,R) satisfies the integral equation (2.1). Ap-
plying the Riemann-Liouville operator Dα

0+ to both sides of the integral equation
(2.1), we have

Dα
0+u(t) = Dα

0+

(
1

Γ(α)

∫ t

0

(t− s)α−1f (s, u(s), u(θ(s)))ds+ λ

∫ T

0

u(s)ds+ d

)
Dα

0+u(t) = f (t, u(t), u(θ(t))) .

In addition, we have u(0) = λ
∫ T

0
u(s)ds + d from the integral equation (2.1). The

proof is complete. 2

Lemma 2.4. Suppose that {uε} is a family of continuous functions defined on J ,
for each ε > 0, which satisfies

(2.2)

{
Dα

0+uε(t) = f (t, uε(t), uε(θ(t))),

uε(0) = λ
∫ T

0
uε(s)ds+ d,

where |f (t, uε(t), uε(θ(t)))| ≤M for t ∈ J . Then the family {uε} is equicontinuous
on J .

Proof. For 0 ≤ t1 < t2 ≤ T , consider

|uε(t1)− uε(t2)| =
1

Γ(α)

∣∣∣∣∫ t1

0

(t1 − s)α−1f (s, uε(s), uε(θ(s)))ds−∫ t2

0

(t2 − s)α−1f (s, uε(s), uε(θ(s)))ds

∣∣∣∣
≤ M

Γ(α)

(∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]ds+

∫ t2

t1

(t2 − s)α−1ds

)
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≤ M

Γ(α+ 1)
[tα1 − tα2 + 2(t2 − t1)α]

≤ 2M

Γ(α+ 1)
(t2 − t1)α < ε,

provided that |t2 − t1| < δ =
[
εΓ(α+1)

2M

] 1
α

, proving the result. 2

3. Uniqueness of Solution

In this section, we obtain the uniqueness of solution of the problem (1.1) for
Riemann-Liouville fractional differential equations with deviating argument and
integral boundary conditions.

Theorem 3.1. Assume that

(i) f ∈ C
(
J × R2,R

)
, θ(t) ∈ C (J, J) , θ ≤ t, t ∈ J,

(ii) there exists nonnegative constants M and N such that function f satisfies

|f(t, u1, u2)− f(t, υ1, υ2)| ≤M |u1 − υ1|+N |u2 − υ2| ,

for all t ∈ J , ui, υi ∈ R, i = 1, 2. If λ < Γ(α+1)−Tα(M+N)
TΓ(α+1) , then the problem

(1.1) has a unique solution.

Proof. Consider the operator T defined by

(Tu) (t) = λ

∫ T

0

u(s)ds+ d+
1

Γ(α)

∫ t

0

(t− s)α−1f (s, u(s), u(θ(s))ds.

Now, we show that T : C1−α(J,R)→ C1−α(J,R) is a contraction operator. For any
u, υ ∈ C1−α(J,R), we have

‖Tu− Tυ‖C = max
t∈J
|(Tu)(t)− (Tυ)(t)|

≤ max
t∈J

λ

∫ T

0

|u(s)− υ(s)| ds+ max
t∈J

1

Γ(α)

∫ t

0

(t− s)α−1

× |f (s, u(s), u(θ(s)))− f (s, υ(s), υ(θ(s)))| ds

≤ λ

∫ T

0

ds ‖u− υ‖C + max
t∈J

1

Γ(α)

∫ t

0

(t− s)α−1

× [|M (u(s)− υ(s))|+ |N (u(θ(s))− υ(θ(s)))|] ds

≤ λT ‖u− υ‖C + max
t∈J

(M +N)

Γ(α)

∫ t

0

(t− s)α−1 ‖u− υ‖C ds

≤ λT ‖u− υ‖C + max
t∈J

(M +N)tα

Γ(α)

∫ 1

0

(1− η)α−1dη ‖u− υ‖C

≤
[
λT +

Tα

Γ(α+ 1)
(M +N)

]
‖u− υ‖C .
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Therefore, ‖Tu− Tυ‖C < ‖u− υ‖C . By the Banach fixed point theorem, the
operator T has a unique fixed point, i.e. the problem (1.1) has a unique solution.
The proof is complete. 2

Corollary 3.1. Let M,N be constants, σ ∈ C1−α(J,R). The linear problem

(3.1)

{
Dα

0+u(t) +Mu(t) +Nu(θ(t)) = σ(t), 0 < α < 1, t ∈ J,
u(0) = λ

∫ T
0
u(s)ds+ d, d ∈ R,

has a unique solution.

Proof. It follows from the Theorem 3.1. 2

4. Monotone Iterative Method

In this section, we prove the existence and uniqueness of solution for the problem
(1.1) by monotone iterative technique combined with the method of upper and lower
solutions. Now we define the functional interval as follows:

[υ0, w0] = {u ∈ C1−α(J,R) : υ0(t) ≤ u(t) ≤ w0(t) ∀t ∈ J} .

First, we prove the following comparison result, which plays an important role in

our further discussion.

Lemma 4.1. Let θ ∈ C (J, J) where θ(t) ≤ t on J . Suppose that p ∈ C1−α(J,R)
satisfies the inequalities

(4.1)

{
Dα

0+p(t) ≤ −Mp(t)−Np(θ(t)) ≡ Fp(t), t ∈ J,
p(0) ≤ 0,

where M and N are constants. If

(4.2) −(1 + Tα) [M +N ] < Γ(1 + α),

then p(t) ≤ 0 for all t ∈ J .

Proof. Consider pε(t) = p(t)− ε(1 + tα), ε > 0. Then

Dα
0+pε(t) = Dα

0+p(t)−Dα
0+ε(1 + tα)

≤ Fp(t)− ε

tαΓ(1− α)
− εΓ(1 + α)

= Fpε(t)+ε

[
−M(1 + tα)−N(1 + tα)− 1

tαΓ(1− α)
− Γ(1 + α)

]
< Fpε(t)+ε [−(1 + tα)(M +N)− Γ(1 + α)] < Fpε(t)

and

pε(0) = p(0)− ε(1 + tα) < 0.
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We prove that pε(t) < 0 on J. Assume thatpε(t) ≮ 0 on J . Thus there exists a
t1 ∈ (0, T ] such that pε(t1) = 0 and pε(t) < 0, t ∈ (0, t1). In view of Lemma 2.2, we
have Dα

0+pε(t1) ≥ 0. It follows that

0 < Fpε(t) = −Npε(θ(t1)).

If N = 0, then 0 < 0, which is a contradiction. If −N > 0, then pε(θ(t1)) > 0, which
is again a contradiction. This proves that pε(t) < 0 on J . So p(t) − ε(1 + tα) < 0
on J . Taking ε→ 0, we obtain required result. 2

Definition 4.1. A pair of functions [υ0, w0] in C1−α(J,R) are called lower and
upper solutions of the problem (1.1) if

(4.3) Dα
0+υ0(t) ≤ f (t, υ0(t), υ0(θ(t))) , υ0(0) ≤

∫ T
0
υ0(s)ds+ d

and

(4.4) Dα
0+w0(t) ≥ f (t, w0(t), w0(θ(t))) , w0(0) ≥

∫ T
0
w0(s)ds+ d.

Theorem 4.1. Assume that

(i) f ∈ C
(
J × R2,R

)
, θ ∈ C (J, J) , θ(t) ≤ t, t ∈ J,

(ii) functions υ0 and w0 in C1−α(J,R) are lower and upper solutions of the prob-
lem (1.1) such that υ0(t) ≤ w0(t) on J ,

(iii) there exists nonnegative constants M , N such that function f satisfies the
condition

(4.5) f(t, u1, u2)− f(t, υ1, υ2) ≥ −M(u1 − υ1)−N(u2 − υ2),

for υ0(t) ≤ υ1 ≤ u1 ≤ w0(t), υ0(θ(t)) ≤ υ2 ≤ u2 ≤ w0(θ(t)).

Then there exists monotone sequences {υn(t)} and {wn(t)} in C1−α(J,R) such that

{υn(t)} → υ(t) and {wn(t)} → w(t) as n→∞

for all t ∈ J , where υ and w are minimal and maximal solutions of the problem
(1.1) respectively and υ(t) ≤ u(t) ≤ w(t) on J.

Proof. For any η ∈ C1−α(J,R) such that η ∈ [υ0, w0], we consider the following
linear problem:

(4.6)

{
Dα

0+u(t) = f (t, η(t), η(θ(t))) +M [η(t)− u(t)] +N [η(θ(t))− u(θ(t))] ,

u(0) =
∫ T

0
u(s)ds+ d,

By Corollary 3.1, the linear problem (4.6) has a unique solution u(t).
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Next, we define the iterates as follows and construct the sequences {υn}, {un}

(4.7)


Dα

0+υn+1(t) = f (t, υn(t), υn(θ(t)))−
M [υn+1(t)− υn(t)]−N [υn+1(θ(t))− υn(θ(t))],

υn+1(0) =
∫ T

0
υn(s)ds+ d,

and

(4.8)


Dα

0+wn+1(t) = f (t, wn(t), wn(θ(t)))−
M [wn+1(t)− wn(t)]−N [wn+1(θ(t))− wn(θ(t))],

wn+1(0) =
∫ T

0
wn(s)ds+ d,

Clearly, the existence of solutions υn+1 and wn+1 of the problems (4.7) and (4.8),
respectively, follows from the above arguments. Further, by setting n = 0 in the
problems (4.7), (4.8), we get the existence of solutions υ1 and w1, respectively. We
show that υ0(t) ≤ υ1(t) ≤ w1(t) ≤ w0(t). Set p(t) = υ1(t) − υ0(t). Since υ0 is the
lower solution of the problem (4.7), we have

Dα
0+p(t) = Dα

0+υ1(t)−Dα
0+υ0(t)

≥ f (t, υ0(t), υ0(θ(t)))− f (t, υ0(t), υ0(θ(t)))−
M [υ1(t)− υ0(t)]−N [υ1(θ(t))− υ0(θ(t))]

≥ −Mp(t)−Np(θ(t))

and

p(0) = υ1(0)− υ0(0) ≥
∫ T

0

υ0(s)ds+ d−
∫ T

0

υ0(s)ds− d = 0.

From Lemma 4.1, we obtain p(t) ≥ 0, which implies that υ1(t) ≥ υ0(t) on J .
Similarly, we can prove υ1(t) ≤ w1(t) and w1(t) ≤ w0(t) on J. Thus υ0(t) ≤ υ1(t) ≤
w1(t) ≤ w0(t). Assume that for some k > 1,

υk−1(t) ≤ υk(t) ≤ wk(t) ≤ wk−1(t)on J.

We claim that υk(t) ≤ υk+1(t) ≤ wk+1(t) ≤ wk(t) on J. To prove our claim, set
p(t) = υk+1(t)− υk(t). Then we have

Dα
0+p(t) = Dα

0+υk+1(t)−Dα
0+υk(t)

= f (t, υk(t), υk(θ(t)))−M [υk+1(t)− υk(t)]−
N [υk+1(θ(t))− υk(θ(t))]−f (t, υk−1(t), υk−1(θ(t))) +

M [υk(t)− υk−1(t)] +N [υk(θ(t))− υk−1(θ(t))]

≥ −M [υk+1(t)− υk(t)]−N [υk+1(θ(t))− υk(θ(t))]

≥ −Mp(t)−Np(θ(t)),

and

p(0) = υk+1(0)− υk(0) =

∫ T

0

υk(s)ds+ d−
∫ T

0

υk−1(s)ds− d

≥
∫ T

0

[υk(s)− υk(s)] ds = 0.
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By Lemma 4.1, we obtain p(t) ≥ 0, implying that υk+1(t) ≥ υk(t) for all t ∈ J .
Similarly, we can prove υk+1(t) ≤ wk+1(t) and wk+1(t) ≤ wk(t) for all t ∈ J . From
the principle of mathematical induction, we have

(4.9) υ0 ≤ υ1 ≤ υ1 ≤ ... ≤ υk ≤ wk ≤ ... ≤ w2 ≤ w1 ≤ w0 on J.

Clearly, the sequences {υn}, {wn} are monotonic and uniformly bounded. Fur-
ther we observe that {Dα

0+υn} and {Dα
0+wn} are also uniformly bounded on J ,

in view of the relations (4.7), (4.8). Applying Lemma 2.4 we can conclude that
sequences {υn}, {wn} are equicontinuous. Hence by the Ascoli-Arzela theorem the
sequences {n} , {wn} converge uniformly to υ and w on J respectively.

Now, we prove that υ and w are the minimal and maximal solutions of the
problem (1.1). Let u be any solution of the problem (1.1) different from υ and w.
So there exists a k such that υk(t) ≤ u(t) ≤ wk(t) on J . Set p(t) = u(t)− υk+1(t).
Then we have

Dα
0+p(t) = Dα

0+u(t)−Dα
0+υk+1(t)

= f (t, u(t), u(θ(t)))− f (t, υk(t), υk(θ(t))) +

M [υk+1(t)− υk(t)] +N [υk+1(θ(t))− υk(θ(t))]

≥ −M [u(t)− υk+1(t)]−N [u(θ(t))−υk+1(θ(t))]

≥ −Mp(t)−Np(θ(t)),

and

p(0) = u(0)− υk+1(0) =

∫ T

0

[u(s)− υk(s)] ds ≥ 0.

By Lemma 4.1, we obtain p(t) ≥ 0, implying that u(t) ≥ υk+1(t) for all k on J .
Similarly, we can prove u(t) ≤ wk+1(t) for all k on J . Since υ0(t) ≤ u(t) ≤ u0(t)
on J . By induction it follows that υk(t) ≤ u(t) and u(t) ≤ wk(t) for all k. Thus
υk(t) ≤ u(t) ≤ wk(t) on J . Taking the limit as k →∞, we obtain υ(t) ≤ u(t) ≤ w(t)
on J . Thus the functions υ(t), w(t) are the minimal and maximal solutions of the
problem (1.1). The proof is complete. 2

Next we prove the uniqueness of solution of the problem (1.1) as follows.

Theorem 4.2. Assume that

(i) all the conditions of the Theorem 4.1 hold,

(ii) there exists nonnegative constants M , N such that the function f satisfies the
condition

(4.10) f(t, u1, u2)− f(t, υ1, υ2) ≤M(u1 − υ1) +N(u2 − υ2),

for υ0(t) ≤ υ1 ≤ u1 ≤ w0(t), υ0(θ(t)) ≤ υ2 ≤ u2 ≤ w0(θ(t)).
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Then the problem (1.1) has a unique solution.

Proof. We know υ(t) ≤ w(t) on J . It is sufficient to prove that υ(t) ≥ w(t) on J .
Consider p(t) = w(t)− υ(t). Then we have

Dα
0+p(t) = Dα

0+w(t)−Dα
0+υ(t)

= f (t, w(t), w(θ(t)))− f (t, υ(t), υ(θ(t)))

≤ −M [υ(t)− w(t)]−N [υ(θ(t))− w(θ(t))]

= −Mp(t)−Np(θ(t))

and

p(0) = w(0)− υ(0) =

∫ T

0

[w(s)− υ(s)] ds ≤ 0.

By Lemma 4.1, we know p(t) ≤ 0, implying that υ(t) ≥ w(t), and the result
follows. 2
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eree and the English language expert Prof. J. T. Neugebauer for their valuable
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