SPRINGER LINK

Log in

≡ Menu

Q Search

🗀 Cart

Home > Mobile Computing and Sustainable Informatics > Conference paper

Keyword Recognition from EEG Signals on Smart Devices a Novel Approach

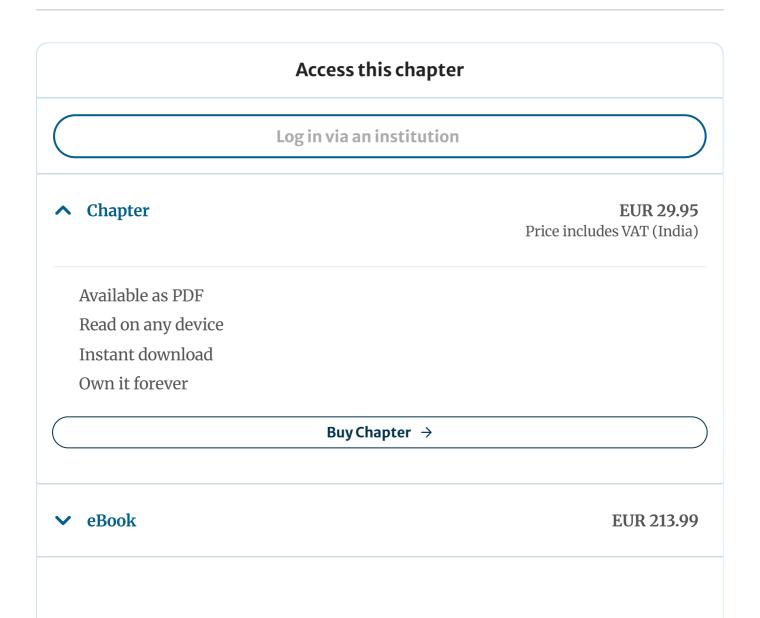
| Conference paper | First Online: 23 July 2021

| pp 33–53 | Cite this conference paper

Mobile Computing and Sustainable Informatics

Sushil Pandharinath Bedre, Subodh Kumar Jha, Chandrakant Patil, Mukta Dhopeshwarkar, Ashok Gaikwad & Pravin Yannawar

Part of the book series: <u>Lecture Notes on Data Engineering and Communications</u>
Technologies ((LNDECT, volume 68))


1006 Accesses

Abstract

Technological advancement in the field of electroencephalography (EEG) based on brain activity classification extends a variety of significant applications, namely, emotion recognition, muscular moment analysis, neurological disorders identification, the prediction of the intensions, machine controlling in smart devices, and healthcare devices. In this article, a novel approach is introduced for EEG-based digit and keyword

recognition for smart devices like mobile, tablets, etc. EEG signals recordings of 10 subjects (i.e., 7 male and 3 female) were acquired from the age group 20–25 years, and volunteered to imagine digits and keywords. An multiple feature extraction algorithms were employed such as short-time Fourier transform (STFT), discrete cosine transform (DCT), and discrete wavelet transform (DWT) to extract the feature from EEG data. The dimension of the feature space was reduced by employing linear discriminant analysis (LDA). The normalized features were passed through diverse nature of multiple classifiers, namely, support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), Naïve Bayes (NB), multi-layer perceptron (MLP), and convolution neural network (CNN) to perform classification analysis. By analysis and comparison of the classifiers, the MLP outperformed to claim over the rest of the classifiers in both digit and keyword classification with 96.43% and 92.36% recognition accuracy, respectively.

1 This is a preview of subscription content, log in via an institution **1** to check access.

EUR 249.99

Tax calculation will be finalised at checkout Purchases are for personal use only

<u>Institutional subscriptions</u> →

References

- **1.** A. Rosado, A.C. Rosa, Automatic Detection of Epileptiform Discharges in the EEG. arXiv:605.06708 (2016)
- M. Phothisonothai, M. Nakagawa, EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface. IEICE Trans. Inf. Syst. 91(1), 44–53 (2008)

Article Google Scholar

3. X. Zhang, L. Yao, D. Zhang, X. Wang, Q.Z. Sheng, T. Gu, Multi-person brain activity recognition via comprehensive EEG signal analysis, in *Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services*, pp. 28–37, 2017

Google Scholar

4. N. Jatupaiboon, S. Pan-ngum, P. Israsena, Real-time EEG-based happiness detection system. Sci. World J. **2013** (2013)

Google Scholar

5. S. Jirayucharoensak, S. Pan-Ngum, P. Israsena, EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci.

World J. **2014** (2014)

Google Scholar

6. P. Ackermann, C. Kohlschein, J.Á. Bitsch, K. Wehrle, S. Jeschke, EEG-based automatic emotion recognition: feature extraction, selection and classification methods, in 2016 *IEEE 18th International Conference on E-Health Networking, Applications and Services* (Healthcom) (IEEE, 2016), pp. 1–6

Google Scholar

 T. Alotaiby, F.E. Abd El-Samie, S.A. Alshebeili, I. Ahmad, A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015(1), 66 (2015)

Google Scholar

8. F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, F. Yger, A review of classification algorithms for EEG-based brain—computer interfaces: a 10 year update. J. Neural Eng. **15**(3), 031005 (2018)

Google Scholar

9. F. Lotte, A tutorial on EEG signal–processing techniques for mental–state recognition in brain–computer interfaces, in *Guide to Brain–Computer Music Interfacing* (Springer, London, 2014), pp. 133–161

Google Scholar

10. K. Amarasinghe, D. Wijayasekara, M. Manic, EEG based brain activity monitoring using artificial neural networks, in 2014 7th International Conference on Human System Interactions (HSI) (IEEE, 2014), pp. 61–66

Google Scholar

11. C. Chen, J. Wang, K. Li, W. Qiuyi, H. Wang, Z. Qian, G. Ning, Assessment visual fatigue of watching 3DTV using EEG power spectral parameters. Displays **35**(5), 266–272 (2014)

Article Google Scholar

12. S.-Y. Dong, B.-K. Kim, S.-Y. Lee, EEG-based classification of implicit intention during self-relevant sentence reading. IEEE Trans. Cybern. **46**(11), 2535–2542 (2015)

Article Google Scholar

13. R.S. Huang, C.J. Kuo, L.–L. Tsai, O.T.C. Chen, EEG pattern recognition–arousal states detection and classification, in *Proceedings of International Conference on Neural Networks (ICNN'96)*, vol. 2 (IEEE, 1996), pp. 641–646

Google Scholar

14. R. Horlings, D. Datcu, L.J.M. Rothkrantz, Emotion recognition using brain activity, in Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing, pp. II–1, 2008

Google Scholar

15. G.E. Fabiani, D.J. McFarland, J.R. Wolpaw, G. Pfurtscheller, Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. **12**(3), 331–338 (2004)

Article Google Scholar

16. H.U. Amin, W. Mumtaz, A.R. Subhani, M.N.M. Saad, A.S. Malik, Classification of EEG signals based on pattern recognition approach. Front. Comput. Neurosci. **11**, 103 (2017)

17. S.K. Hadjidimitriou, L.J. Hadjileontiadis, EEG-based classification of music appraisal responses using time-frequency analysis and familiarity ratings. IEEE Trans. Affect. Comput. **4**(2), 161–172 (2013)

Article Google Scholar

18. Y. Hashimoto, J. Ushiba, EEG-based classification of imaginary left and right foot movements using beta rebound. Clin. Neurophysiol. **124**(11), 2153–2160 (2013)

Article Google Scholar

19. P. Herman, G. Prasad, T.M. McGinnity, D. Coyle, Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. **16**(4), 317–326 (2008)

Google Scholar

20. B. Hosseinifard, M.H. Moradi, R. Rostami, Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Progr. Biomed. **109**(3), 339–345 (2013)

Google Scholar

21. D. Iacoviello, A. Petracca, M. Spezialetti, G. Placidi, A real-time classification algorithm for EEG-based BCI driven by self-induced emotions. Comput. Methods Programs Biomed. **122**(3), 293–303 (2015)

Article Google Scholar

22. A. Erfanian, A. Erfani, ICA-based classification scheme for EEG-based brain-computer interface: the role of mental practice and concentration skills, in *The 26th*

Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1 (IEEE, 2004), pp. 235–238

Google Scholar

23. K.D. Valente, J.Q. Andrade, R.M. Grossmann, F. Kok, C. Fridman, C.P. Koiffmann, M.J. Marques-Dias, Angelman syndrome: difficulties in EEG pattern recognition and possible misinterpretations. Epilepsia **44**(8), 1051–1063 (2003)

Google Scholar

24. A.K. Jaiswal, H. Banka, Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals. Biomed. Sig. Process. Control **34**, 81–92 (2017)

Google Scholar

25. I. Jayarathne, M. Cohen, S. Amarakeerthi, BrainID: Development of an EEG-based biometric authentication system, in 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (IEEE, 2016), pp. 1–6

Google Scholar

26. N. Jrad, M. Congedo, R. Phlypo, S. Rousseau, R. Flamary, F. Yger, A. Rakotomamonjy, sw–SVM: sensor weighting support vector machines for EEG-based brain—computer interfaces. J. Neural Eng. **8**(5), 056004 (2011)

Google Scholar

27. R. Khosrowabadi, H.C. Quek, A. Wahab, K.K. Ang, EEG-based emotion recognition using self-organizing map for boundary detection, in 2010 20th International Conference on Pattern Recognition (IEEE, 2010), pp. 4242–4245

Google Scholar

28. K. Kunze, Y. Shiga, S. Ishimaru, K. Kise, Reading activity recognition using an off-the-shelf EEG--detecting reading activities and distinguishing genres of documents, in 2013 12th International Conference on Document Analysis and Recognition (IEEE, 2013), pp. 96–100

Google Scholar

29. P. Lahane, A.K. Sangaiah, An approach to EEG based emotion recognition and classification using kernel density estimation. Procedia Comput. Sci. **48**, 574–581 (2015)

Google Scholar

30. W. Li, Q.-C. He, X.-M. Fan, Z.-M. Fei, Evaluation of driver fatigue on two channels of EEG data. Neurosci. Lett. **506**(2), 235–239 (2012)

Google Scholar

31. C.-T. Lin, M. Nascimben, J.-T. King, Y.-K. Wang, Task-related EEG and HRV entropy factors under different realworld fatigue scenarios. Neurocomputing (2018). https://doi.org/10.1016/j.neucom.2018.05.043

Author information

Authors and Affiliations

Dr. Babasaheb Ambedkar University, Aurangabad, Maharashtra, 431004, India Sushil Pandharinath Bedre, Subodh Kumar Jha, Chandrakant Patil, Mukta Dhopeshwarkar, Ashok Gaikwad & Pravin Yannawar

Editor information

Editors and Affiliations

Institute of Engineering, Tribhuvan University, Kirtipur, Nepal Subarna Shakya

Czech Technical University in Prague, Praha, Czech Republic

Robert Bestak

Gerald Schwartz School of Business, St. Francis Xavier University, Antigonish, NS, Canada

Ram Palanisamy

Department of Computer Science, Texas Southern University, Houston, TX, USA Khaled A. Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Bedre, S.P., Jha, S.K., Patil, C., Dhopeshwarkar, M., Gaikwad, A., Yannawar, P. (2022). Keyword Recognition from EEG Signals on Smart Devices a Novel Approach. In: Shakya, S., Bestak, R., Palanisamy, R., Kamel, K.A. (eds) Mobile Computing and Sustainable Informatics. Lecture Notes on Data Engineering and Communications Technologies, vol 68. Springer, Singapore. https://doi.org/10.1007/978-981-16-1866-6_3

.RIS★ .ENW★ .BIB★

78-981-16-1866-6 3

DOI Published Publisher Name
https://doi.org/10.1007/9 23 July 2021 Springer, Singapore

Print ISBN Online ISBN eBook Packages

978-981-16-1865-9 978-981-16-1866-6 <u>Intelligent Technologies</u>

and Robotics

Intelligent Technologies and Robotics (RO)

Publish with us

Policies and ethics [2