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Spatial Data Mining of Agricultural

Land Area Using Multi-spectral

Remote-Sensed Images

Parminder Kaur Birdi, Karbhari Kale, and Varsha Ajith

1 Introduction

Satellite sensors data is available for larger areas making it suitable for agricultural
land monitoring. This data is acquired at frequent intervals which is useful to under-
stand changes occurring in agricultural land areas. Due to the availability of satellite
images covering large-scale areas, it is possible to design efficient agriculture land
use monitoring systems by applying different spatial data mining methods [1]. The
traditional data mining methods have been majorly focusing on transactional and
relational databases. Remote-sensed data (spatial or geo-referenced) collected by
various sensors record spatial relations present in the data. These systems record
energy reflected at different wavelength ranges present in the electromagnetic spec-
trum. Satellite images have a huge amount of spatial information of different land
covers recorded from the earth’s surface. The traditional agricultural monitoring
systems are dependent on extensive human efforts, and they usually cover smaller
areas. This problem can be overcome using remotely sensed systems as the larger
area is covered and human efforts and cost is also lowered. The temporal and spatial
resolutions of the input data need to be considered appropriately.
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Remote-sensed data are used from multi-spectral (MS), hyper-spectral (HS), and
panchromatic sensors. Remote-sensed data from AVIRIS, MODIS, IRS-LISS-III, IV,
SPOT-4,5, Landsat-7,8, ASTER, GF-2, IKONOS, and Sentinel-2 sensors are mostly
used for agricultural land monitoring and crop growth analysis systems. It has been
observed that spatial resolutions typically range from 250 to 5.8 m [2, 3].

Spatial data mining (SDM) has developed from the field of data mining and
statistics. A large number of tasks including clustering, classification, association
rule mining and data visualization is part of spatial data mining. SDM has a number
of steps, wherein the selection of appropriate remote sensed images can be started
with, followed by preprocessing and normalization of images, application of the
spatial mining method for the classification task, visualization, and performance
evaluation of results produced. Agricultural monitoring systems have been designed
using spatial data mining methods [4]. There are two approaches to remote-sensed
image classification; supervised and unsupervised. Maximum likelihood classifier
(MLC), support vector machines (SVM), neural networks (NN), and decision tree
(DT) are most commonly used supervised methods. DT and NN methods have been
observed to generate higher classification accuracy in comparison with the traditional
method, MLC. The performance of classifier depends on the training dataset created
using handcrafted features. Finding an optimal decision tree design is a compute-
intensive task, as the decision tree should have minimum overall classification error,
appropriate depth of the tree, and an optimal subset of features to form decision rules.

In this study, a decision tree is constructed using rule-based modeling technique
based on the foundation that different land use and land covers (LULC) have different
spectral responses. The rules are formed using spectral signature values for the
target land use and land covers. To improve classification accuracy and reduce time
complexity, NDVI is also used in rule mapping. Rule-based mapping is done at pixel
level. The spectral reflectance values and NDVI values of the training dataset are
used as input.

2 Literature Review

Elodie et al. [5] used remote-sensed images from SPOT-5 sensor for mapping of
cropland. Object-based supervised classification method is designed where expert
rules are framed in the first step, followed by extraction of patterns from the dataset,
and then, patterns are used to build classification rules. Naive Bayes, support vector
machine, random forest, and decision tree methods are used for image classification.
Remote-sensed images from Sentinel-2 sensor is also used for experiments. Overall
accuracies for all methods are computed, and SVM is found to attain the highest
accuracy of 84% as compared to other methods. It has also been concluded that
data mining methods are suitable to process huge amounts of data [5]. Schultz et al.
[6] used temporal images from Landsat-8 to classify study scene into different crop
classes. An automated supervised technique is designed using random forest (RF)
classifier, where features for segmentation step are automatically selected reducing
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human efforts. The proposed method produced a satisfactory overall accuracy for
classification [6]. Many studies show that decision trees achieve higher classification
accuracies as compared to classifiers like MLC, neural network as the time required
to train a DT is less. Decision tree classifier has been applied for cropland monitoring
and mapping. Some other studies illustrate the improvement in classification accura-
cies when spectral signatures are integrated with derived features including texture
values and different vegetation indices [2, 3, 7]. In another study by Lebourgeois
et al. [8] remote-sensed data from SPOT-5, Landsat-8, and PLEIADES sensors are
used for agriculture land mapping. In this study, random forest classifier is applied to
produce land cover maps at different levels into two classes and further into 25 crop
subclasses. Random forest classifier is optimized by reducing variable count and this,
in turn, resulted in less computing time [8]. Gervais et al. [9] carried out experiments
using Landsat-5 and MODIS datasets to study the influence of urbanization on the
growth life cycle of plants. NDVI values were computed and used to extract three
seasons of the vegetation, starting, end, and length of the season. The performance
of the experiments was found to be satisfactory [9].

From different research studies, it has been observed that the selection of appro-
priate features plays a major role in attaining higher classification accuracies using
decision tree classifier.

3 Study Area

For conducting experiments, study scene is selected by considering the presence of
different land covers with an abundance of sugarcane crop at different growth stages
and availability of remote-sensed images. Navin Kaygaon is the study scene, close
to Aurangabad district of Maharashtra state and can be located at 19° 20′ 1.4′′ to 20°
15′ 19.65′′ North and 74° 30′ 43.61′′ to 75° 5′ 67′′ East [10]. Figure 1 shows the study
area acquired from LISS-IV sensor.

The land covers present are waterbody, barefarm, road, settlement, and sugarcane
crop at different growth stages.

4 Data Used

Remote sensing data is collected using satellite sensors, and the appropriate sensor
is selected based on its spatial, spectral, and temporal resolution. The spectral
reflectance values recorded by the sensor can be related to its phenological growth
cycle of sugarcane crop. Different stages of the life cycle of a crop are its sowing
time, budding, ripening, and harvesting. Spatial resolution, i.e., the size of a pixel,
and the number of pixels present in a typical a sugarcane farm also affects the clas-
sification accuracy. Tables 1 and 2 show detailed specifications remote-sensed data
used for different experiments.
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India

Maharashtra

Fig. 1 Satellite image of study area represented by LISS-IV data

Table 1 Landsat-8 OLI sensor data specifications

Mode Band Spectral region Spectral resolution
(µm)

Spatial resolution (m)

Panchromatic Band 8 Panchromatic 0.50–0.68 15

Multispectral Band 1 Visible 0.43–0.45 30

Band 2 Visible 0.450–0.51

Band 3 Visible 0.53–0.59

Band 4 Red 0.64–0.67

Band 5 Near-infrared (NIR) 0.85–0.88

Band 6 SWIR 1 1.57–1.65

Band 7 SWIR 2 2.11–2.29

Table 2 LISS-IV data specifications

Mode Band Spectral region Spectral resolution
(µm)

Spatial resolution (m)

Panchromatic Single Panchromatic 0.50–0.75 5.8

Multispectral Band 2 Visible 0.52–0.59 5.8

Band 3 Visible 0.62–0.68

Band 4 Near-infrared (NIR) 0.77–0.86
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In situ data is also collected for precise remote-sensed image interpretation. For
information related to crops cultivated, the growth cycle of crops was collected with
the help of local farmers who owned farms of the study area. GPS enabled handheld
devices were used to record geographical coordinates of a total of 150 sugarcane
farms which ranged in size from half an acre to sixteen acres.

5 Proposed Methodology and Experimentation

This section describes the proposed research methodology used to classify multi-
spectral remote-sensed images. Spatial data mining method decision tree has been
used as a classifier here [11]. For experiments, multistage decision tree has been
designed by applying rules created using band spectral reflectance values and NDVI.
Figure 2 shows the proposed flow diagram of the proposed methodology. Since
dataset specifications are different, separate decision trees are developed for LISS-
IV and Landsat-8 images. According to Tucker et al. [12] and Schmidt et al. [13],
physical characteristics of crops change with different growth stages and can be
better interpreted using vegetation indices (VI) [12, 13]. The most recommended
vegetation index, NDVI, has been used in experiments. NDVI represented by Eq. 1
is calculated as the ratio between red and NIR bands and spectral reflectance values
[14, 15].

NDVI =
RNIR − RRed

RNIR + RRed
(1)

5.1 LISS-IV and Landsat-8 Dataset Pre-processing

Since satellite images are not directly usable due to radiometric, geometric, and atmo-
spheric errors present in them. LISS-IV dataset is acquired from IIRS and images that

Fig. 2 Flow diagram of the proposed methodology using decision tree classifier
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Fig. 3 Landsat-8 dataset preprocessing

are geometrically and radiometrically corrected. So no preprocessing is performed
on them. The study area is cropped and layer stacked for further use. Landsat-8
images are preprocessed after acquiring them in L 1T format. The steps performed
to preprocess them are shown in Fig. 3. The preprocessing is carried out using ENVI
software by applying quick atmospheric correction method on all the images.

5.2 Experimentation

An exponential number of decision trees can be constructed from a given set of
attributes or features, where some of the trees can be more accurate than others.
Finding an optimal decision tree is computationally infeasible as the search space is
exponential in size. Various decision trees were built using trial and error. A widely
used decision tree algorithm C4.5 is applied to generate decision trees since reaching
an optimum tree is time consuming. A greedy algorithmic model is used to overcome
this, where at every level a locally optimal decision is made to construct the decision
tree. The set of features are used to partition the data. A training set is constructed
by investigating the existing data, where a class label is assigned to every pixel. A
recursive algorithm is developed by making a combination of feature values from the
training data. This algorithm works fine if every feature combination has a class label
assigned to it. The alternate condition can arise for a case, where for some feature
combinations no training data gets associated with the identified class labels.

Once a decision tree is constructed, classifying a test data is fast as worst-case
complexity is O(d), where d is the maximum depth of the tree. Maximum depth
of the decision tree reached a depth of 16, generating 65 leaf nodes and a total of
128 nodes for Landsat-8 image with four classes and seven attributes. The total time
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taken is 9 min and 19 s with an accuracy of only 50% on test data. The minimum
depth as indicated by Landsat-8 decision tree is three and four for LISS-IV image.

A minimum of 50 training pixel values (for every target class) are considered
from all spectral bands. The mean values are computed along with standard deviation
and further used to frame the rules for decision making. Four land covers as target
classes could be selected for Landsat-8 image due to fewer number of training pixels
for road and barefarm, whereas six land covers were selected for LISS-IV image
classification.

Table 3 shows minimum (min), maximum (max), mean, and standard deviation
(SD) values obtained from regions of interest marked as a training dataset for Landsat-
8 image. Similarly, Table 5 shows spectral reflectance distribution in all bands for
the target classes of LISS-IV image. The two most separable group of classes are
processed first, and the subtlest class pair will be processed last. This helps in reducing
cumulative error. To ensure better accuracy, error generated at every decision node
needs to be reduced by making use of optimal or sub-optimal features for portioning
of the data, as given in Table 4.

The highest class separability is shown by water from Crop-Hv and Crop-Gr with
a value of 2.0. So, for this design at level 1, water is separated from other land covers
using Band 7 (spectral reflectance values are less than 0.048). It has no overlap with
other class range. For the next decision rule, class ‘Others’ show the next best TD
value w.r.t to Crop-hv and Crop-Gr. The optimal decision tree for Landsat-8 image
is shown in Fig. 4a.

The best features selected are considered for constructing final decision trees for
LISS-IV image as shown in Fig. 4b.

6 Results and Interpretation

The performance of decision tree classifier has been evaluated using a confusion
matrix. The confusion matrix shows the relationship between the predicted values and
actual (ground truth) values. The confusion matrix is further used to calculate overall
classification accuracy which is defined as the ratio between correctly predicted
values and a total number of predicted values. Kappa coefficient is also computed
to measure the agreement between predicted values and actual values, where a zero
coefficient value means no agreement and one means complete agreement. With the
increase in kappa value, classification accuracy becomes better. The same images
have also been classified using maximum likelihood classifier (MLC) for comparison
of results, and classified images are shown in Figs. 5 and 6.
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Table 3 Spectral reflectance distribution in all bands for Landsat-8 data

Crop-Hv Crop-Gr Water Others

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

B1 0.131 0.145 0.139 ± 0.003 0.132 0.138 0.132 ± 0.001 0.126 0.136 0.129 ± 0.001 0.128 0.228 0.146 ± 0.011

B2 0.112 0.132 0.123 ± 0.004 0.113 0.125 0.116 ± 0.001 0.105 0.117 0.109 ± 0.002 0.108 0.226 0.132 ± 0.015

B3 0.097 0.123 0.110 ± 0.005 0.102 0.116 0.107 ± 0.003 0.081 0.102 0.088 ± 0.004 0.085 0.235 0.122 ± 0.029

B4 0.086 0.137 0.113 ± 0.008 0.081 0.107 0.090 ± 0.005 0.063 0.085 0.071 ± 0.004 0.082 0.257 0.130 ± 0.029

B5 0.151 0.329 0.185 ± 0.038 0.279 0.404 0.341 ± 0.022 0.059 0.095 0.068 ± 0.005 0.124 0.372 0.211 ± 0.058

B6 0.141 0.203 0.166 ± 0.012 0.141 0.194 0.151 ± 0.010 0.035 0.062 0.041 ± 0.004 0.105 0.376 0.190 ± 0.045

B7 0.083 0.164 0.126 ± 0.013 0.067 0.105 0.081 ± 0.007 0.023 0.044 0.027 ± 0.003 0.089 0.329 0.141 ± 0.035

Bold values represent attributes used to form rules for decision tree for Landsat-8
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Table 4 Best features for class pairs of Landsat-8 data used in optimal DT

Class pairs No. of features selected Best feature selected

Crop-Hv + Crop-Gr NDVI, B5 NDVI

Crop-Hv + Water B6, B7 B7

Crop-Gr + Water B6, B7 B7

Crop-Hv + Others B5,B4 B4

Crop-Gr + Others B7, B4 B4

Water + Others B5, B6, B7 B7

The results show that DT classifier has higher classification accuracy as compared
to MLC as optimal features are selected to form classification rules while constructing
a decision tree. The first classification rule consists of spectral features which have the
highest separability, measured using transformed-divergence matrix. Further classi-
fication rules also follow the same selection criterion. Another factor which resulted
in improvement of accuracy is the inclusion of NDVI values for classification of
sugarcane crop at harvest and grown stage. Table 6 shows the classification results
obtained on both the datasets. Since the spatial resolution of LISS-IV dataset is 5.8 m,
user’s and producer’s accuracy (UA, PA) for six classes is found to be better than
Landsat-8 dataset as per results obtained by Kaur and Kale [16].

7 Conclusions and Future Scope

Traditionally, agricultural land monitoring is being done using manual methods
which are time inefficient and tedious. The work done using manual surveys is also
error prone and results in inaccurate data recording. Satellite images are found to
be appropriate for this task as they cover larger areas, and availability of periodic
information makes them beneficial for doing the task of agricultural land monitoring
automated. While performing spatial data mining methods such as decision trees,
the accuracy of supervised classification methods depends on correct labeling of
training samples and also a suitable amount of training samples. This study shows
that multi-spectral images from Landsat-8 and LISS-IV sensors are suitable to carry
out this task of agricultural land monitoring using a decision tree. As new techniques
such as deep learning have also been used for similar work, the task can be performed
using deep convolutional neural networks for more accurate results.
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Table 5 Spectral reflectance distribution in all bands for LISS-IV data

Crop-Hv Crop-Gr Water Settlement Road Barefarm

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

B1 0 168 46.58 ± 25 0 205 45.86 ± 19.9 0 155 1.7 ± 9.15 24 255 221 ± 38.05 15 177 60.7 ± 20.8 0 255 160 ± 38.4

B2 0 151 33.60 ± 19 23 255 165 ± 40.6 0 255 0.8 ± 7.94 53 255 155 ± 33.7 1 40 20.24 ± 10.4 31 255 151.36 ± 48

B3 0 176 64.40 ± 22.5 0 255 26.0 ± 17.2 0 133 1.17 ± 6.82 29 255 208 ± 43.5 12 126 58.42 ± 16.6 28 255 164.5 ± 37.2

Bold values represent attributes used to form rules for decision tree for LISS-IV
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Fig. 4 a Optimal decision tree for Landsat-8 image. b Optimal decision tree for LISS-IV image

a) Test image b) MLC classified              c) DT classified d) Legend

Fig. 5 Classification results for LISS-IV image of date 27th April’17
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a) Test image b) MLC classified          c) DT classified d) Legend

Fig. 6 Classification results for Landsat-8 image of date 24th May’17

Table 6 Classification results for study images of LISS-IV and Landsat-8 images

Study image details Decision tree Maximum likelihood classifier

Class UA% PA% UA% PA%

LISS-IV Image of date
27th Apr’17

Crop-Hv 91.92 71.74 68.85 55.08

Crop-Gr 96.49 87.4 85.33 98.81

Waterbody 88.32 97.71 98.3 96.68

Road 25 20 14.74 88.32

Settlement 99.95 82.8 96.31 8.99

Barefarm 10 8 12.4 80.59

OA 79.45% 75.71%

k 0.716 0.692

Landsat-8 image of date
24th May’17

Crop-Hv 92.08 74 79.41 79.41

Crop-Gr 97.22 93.22 93.06 97

Waterbody 100 100 100 100

Others 76.55 96.52 88.24 86.54

OA 88.97% 89.88%

k 0.86 0.86

Bold values represent highest UA values observed
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