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Abstract
The present study reports classification and analysis of composite land features using
fusion images obtained by fusing two original hyperspectral and multispectral datasets.
The high spatial-spectral resolution, multi-instrument and multi-period satellite images
were used for fusion. Three pixel level fusion based techniques, Color Normalized
Spectral Sharpening (CNSS), Principal Component Spectral Sharpening Transform
(PCSST) and Gram-Schmidt Transform (GST), were implemented on the datasets.
Performance evaluations of three fusion algorithms were done using classification results.
The Support Vector Machine (SVM) and Gaussian Maximum Likelihood Classification
(MLC) were used for classification using five types of images, viz. hyperspectral,
multispectral and three fused images. Number of classes considered was eight. Sufficient
number of ground field data for each class has also been acquired which was needed for
supervise based classification. The accuracy was improved from 74.44 to 97.65% when
the fused images were considered with SVM classifier. Similarly, the results were
improved from 69.25 to 94.61% with original and fused data using MLC classifier.
The fusion image technique was found to be superior to the single original image and the
SVM is better than the MLC method.

Keywords Pixel level fusion . Color normalized spectral sharpening (CNSS) . Dimensionality
reduction .Minimum noise fraction .Maximum likelihood classifier . Supervised classification

1 Introduction

Presently diverse sensors have been used for earth observation to identify and classify various
patterns on the earth surface. Each sensor has its own spatial and spectral attributes in
hyperspectral, multispectral and panchromatic (PAN) images [11], elevation in Light
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Detection And Ranging (LiDAR) data, amplitude and phase in Synthetic Aperture Radar
(SAR) systems. However, analysis of satellite images are still challenging task due to assorted
effect of various objects [9]. The heterogeneous and composite terrestrial patterns makes
difficult for single source remotely sensed images to meet all requirements of land classifica-
tion. Nevertheless, detection and classification of heterogeneous-assorted terrestrial patterns is
useful application for urban land use/cover classification [28, 30], classification of complex
forest areas [8], multiple crop classification [10], etc.

The single source technology and low spatial-spectral data do not provide the details of
heterogeneous and assorted earth surface objects. The satellite image analysis is necessary for
classification. Accordingly, satellite image fusion is promising way for classification of
complex features for near real time applications like urban land classification [5, 6, 9, 30,
42], multiple crop classification [10] and forest area classification [8]. Satellite remote sensing
technology is relevant and widely used by remote sensing community for numerous applica-
tions and has the potential to offer timely and synoptic information about earth surface features
[28].

The single band image provides the high spatial and lower spectral information. The high
spectral information is found to be more in multiband data, but spatial related information is
low. Hyperspectral data has more spectral channels which give more spectral information
about earth surface features [6]. Though, merely PAN, multispectral or hyperspectral data is
not sufficient for the purpose [9, 12]. The high spatial and spectral information images are
required to overcome the limitations of using only single sensor images [5, 6, 42]. Conse-
quently, a new combined high spatial and spectral resolution image approach is achieved
through fusion of images.

Fusion of images is generally carried out by three different approaches, (i) pixel or iconic
level, (ii) feature level and (iii) decision or knowledge level [3, 34]. These approaches are used
as per applications. The fusion approach based on pixel level enhances efficiency of classifi-
cation and detection [34]. Popular methods based on pixel level fusion algorithms are wavelet
transform, GST, PCSST and CNSS or Brovey transform etc. generally used for enhancing the
accuracy of classification. The statistical methods for classification used are SVM [12, 14, 28]
and MLC [1, 28, 36] which have been extensively used due to their efficiency and simplicity.
The genetic algorithm alone or combined with SVM has also been used and found to be better
than SVM and MLC as classifier [40, 41].

However, earlier studies focus on the fusion of either hyperspectral and LiDAR data, or
hyperspectral and PAN data, or PAN and multispectral datasets. Some studies have been also
reported based on fusion of multispectral and hyperspectral images [37]. However, fusion on
hyperspectral and multispectral images were not studied sufficiently enough to access its
usefulness for various types of applications like classification of complex objects. Therefore,
the present work aims to use the fusion approach for classification of complex-mixed land
objects. The fusion framework of Hyperion and LISS-IV satellite images is carried out with
multi-temporal data to get fusion images which have overcome limitations of single sensor and
single low resolution images.

In the present manuscript, high spatial resolution IRS-Linear Imaging Self Scanner (LISS)-
IV (multispectral) image with high spectral resolution EO-1 Hyperion hyperspectral image
have been utilized for getting joint high spatial and spectral resolution images. The main
objectives were to classify the terrestrial patterns by original and fused datasets and to evaluate
the performance of fusion and classification methods. In the present study we have carried out:
(1) Fusion of LISS-IV and Hyperion images in three techniques using CNSS, PCSST and
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GST, (2) acquiring sufficient number of data at field level to be used for supervised classifi-
cation, (3) applying and analyzing results obtained through the MLC and SVM methods to
original images as well as fused images for classification of the Area of interest (AOI) which
was assumed to be having eight different types of objects.

Details of this study are presented in six sections. This section one has given background of the
study, originality of the paper, and set objectives for the present study. The section 2 contains brief
description of relatedwork reported in the literature andmotivationof the presentwork. The section 3
provides details ofAOI, information regarding relevant satellite images andmethodof acquiring field
data. The section 4 contains the methodology used in the study. It consists of four steps i.e.
preprocessing, image fusion, digital image classification and evaluation of accuracy of classifiers.
The section 5 has provided details of classifications usingMLC and SVMmethods which consist of
preprocessing of the datasets, data fusion, training and testing. The section also contains details
regarding results andcomparisonof twomethodswith reference tooriginal and fused images.The last
section summarizes with conclusion and future scope.

2 Literature retrospect

In contrast to traditional satellite image fusion, numerous investigators reported study of image
fusion using only on PAN with multi or hyperspectral images along with various methods for
classification of the earth surface features [28].

Zoleikani et al. (2017) [42] have used Hyperion and IRS-PAN data for image fusion for
mapping of urban land cover. The study revealed the image fusion by pixel and object based
classificationmethods and received good accuracy of classification. The urban land cover classifica-
tionwasdone (Rajput et al. (2017)) [30] using fusionof veryhigh resolutionWorldView-2PANand
multispectral data and compared the image fusionmethods such asHue-Saturation-Intensity, Brovey
Transform,PrincipalComponentsAnalysis (PCA),DiscreteWaveletTransform,StationaryWavelet
Transform, Non Sub-sampled contourlet Transform and Pseudo Wigner Distribution (PWD), etc.
Instead,Andrejchenko [2] et al. (2019)was studied ondecision level fusion for classificationof urban
and agricultural areas based on probabilistic graphical markov and conditional random fields. The
fusion of complementary decision sources such as fractional abundances, obtained by sparse
unmixing and probabilistic outputs from a soft classifier were measured through two hyperspectral
datasets with limited training samples.

Debeset al. (2014) [9]have studied the supervisedandunsupervisedapproacheswithgraph-based
method for the classification of land patterns using hyperspectral andLiDARdata. The fusion of data
was carried out using spectral-spatial and elevation information. Dalponte et al. (2008) [8] have
worked on hyperspectral and LiDAR data for classification of complex forest areas using SVM and
MLCmethods.They found thatSVMisbetter formultisourcedata.Swatantranet al. (2011) [33]have
estimated amount of biomass using fusion of structuralmetrics of LiDARand spectral characteristics
of hyperspectral data in the Sierra Nevada. Abbasi et al. (2015) [1] have carried out fusion of LiDAR
and hyperspectral data for the classification of surface objects especially urban areas based on Naïve
Bayes classifierwith decision level fusion. They have also performed dimensionality reduction using
PCA and Minimum Noise Fraction (MNF) methods, measurement of texture features based on
GLCM (Grey Level Co-occurrence Matrix) and classification using MLC method. They have
achieved satisfactory results. Similarly, Man et al. (2015) [28] have used hyperspectral and LiDAR
data for urban land-use classification based on pixel and feature-level fusion. The study shows use of

Multimedia Tools and Applications (2020) 79:34737–34769 34739



LiDARdata for the extractionof intensity andheight information using classification basedonSVM,
MLCwith object oriented classifiers.

Unlike LiDAR and hyperspectral data, PAN and multispectral data have capacity of providing
high spatial resolution images which can be utilized for classification of earth surface features using
spatial features. Additionally, classification of urban area and vegetation was carried out by Kumar
etal. (2015) [24]usingbothmultispectral imagesof theLandsat-5ThematicMapper imagealongwith
WorldView-2 imagewith spatial resolutions 30mand2m respectively. The trafficability assessment
was done by decision level fusion on hyperspectral and SAR data [7] using supervised classifiers.
Kosaka et al. (2005) [23] classified forest using the fusion of PAN and multispectral images with
object based classification method. Moreover, Ashraf et al. (2012) [3] worked on freshwater land-
cover mapping using QuickBird image fusion.

Several researchers have reported various types of study related to fusion and classification for
urban land. Zoleikani et al. (2017) [42] compared pixel based (SVM) and object based classifications
for land-cover mapping in an urban area. The GST, PCT, Haar wavelet, and À Trous Wavelet
Transform (ATWT) fusionalgorithmshavealsobeenusedandclassificationaccuracywasevaluated.
Ehlers et al. (2010) [11] used series of multi-date multispectral and PAN Ikonos image and a Terra
SAR-X radar image for assessing the quality of pan sharpening fusion methods.

However, these studies do not worked on the fusion of hyperspectral and multispectral datasets.
Thus, the said issues of literature were investigated in the present research for obtaining the set
objectives. The fusion of multi-temporal, multi-resolution and multi-sensor images provides addi-
tional spatial and spectral information. This task is very critical and challenging which is needed to
study varied properties of earth surface. Therefore, several limitations of the earlier studies were
selected and get motivated to achieve the goal.

3 Area of interest (AOI) and used datasets

3.1 Area of interest (AOI)

The AOI is the composite-assorted terrestrial scene with hilly region and some farming and
urban areas of Aurangabad district of Maharashtra, India (Fig. 1). It covers approximately
32.04 km2 land, geographically extending from 1928′43.27″- 2024′52.19”N latitude and
7513′10.75″ -7530′14.87″ E longitude with an average altitude of 568 m above the sea level
[37]. The landscape of the study area is uneven and the spatial reference is Universal
Transverse Mercator (UTM) zone 43 North and World Geodetic System (WGS)-84 datum.

The study of this region is a challenging task. Difficulties may be due to various factors
like (1) spectral and spatial similarity between vegetation, buildings, barren lands, roads and
rivers lots leads to misclassification, (2) difficulty in analysis of multi-date and multi-sensor
data, (3) mixed pixel effects, (4) atmospheric correction and hyperspectral data dimension-
ality reduction issue, and (5) field information and its variation.

3.2 Datasets

The fusion is done by two datasets for the present study viz. Hyperion and LISS-IV data. The
hyperspectral data is obtained by USGS-NASA [17] and multispectral data is obtained by
NRSC-ISRO, India via Earth Observing-1 (EO-1) Hyperion and IRS-P6 Resourcesat-II
(satellite revisit period is of 5 days) LISS-IV sensors respectively. The thematic maps were
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prepared through Survey of India (SOI) toposheet at 1:50,000 scales. Global Positioning
System (GPS) was used to capture the ground truth points (GTP).

3.2.1 Hyperspectral data

The Hyperion data contains 242 spectral bands ranging from 355.59–2577.08 nm in the visible (35
bands), near infrared (35 bands) and shortwave infrared (172 bands) of date 21 March, 2015 was
used. The spatial and spectral resolutions were 30 m and 10 nm (continuous spectral coverage)
respectively, with 7.74 km by 100 km swat per image. The USGS have provided the level 1 T
orthocorrected image (Level 1 T (GeoTIFF)) in band sequential (BSQ) format. The EO-1 satellite
(temporal resolution is 200 days) was over-passed the studied region on 21March, 2015 through the
147/146 orbit path/target path and 46/46 orbit row/target row [35]. Some of the important parameters
are provided in Table 1.

3.2.2 Multispectral data

The LISS-IV multispectral data was acquired on February 21, 2014, between the times
14:15 and 14:18 h. The spatial resolution is high in LISS-IV data of 5.8 m with 23.5
swaths per scene. The spectral bands are found to be three in LISS-IV data ranging from
520 to 860 nm of Green, Red and Near Infrared (NIR). Subsequently, all three spectral
bands were fused with visible to NIR region of hyperspectral image. In our proposed
approach, an amount of 38 spectral bands of Hyperion data were fused with three spectral
bands of LISS-IV data.

3.2.3 Field campaign

The GPS of Android Smartphone was used to collect the GTPs through field campaign during the
period of February 10, 2015 to March 25, 2015 in between 0800 to 1330 h (IST) with clear
environmental conditions. The observed field sites were captured using digital cameras. Concur-
rently, discussions were donewith local people and noted on digital notebooks for verifying the field
sites. The digital conversion was made of collected GTPs and proximal sensing data. Moreover, the

Fig. 1 The geo-location of the study area and its corresponding Hyperion and LISS-IV images
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GTPs were transferred to region of interests (ROIs) on the co-registered Hyperion and LISS-IV data
and used for development of the training and testing sets. The verification and validation of used data
was frequently evaluated using Google map and Google earth.

4 Architecture of the proposed methodology

The proposed methodology is divided into four sections i.e. preprocessing, image fusion,
digital image classification and evaluation of accuracy of classifiers.

4.1 Pre-processing of satellite images

The data was pre-processed to correct the raw images, remove the unwanted noise and diminish the
dimensionality using relevant algorithms. Subsequently, the geographic coordinates were set
according to the size of study area as upper left was 200,945.47 N and 752,122.44 E, whereas
lower right was 200,514.54 N and 752,624.19 E. The LISS-IV image was already corrected by the
providers. However, an orthorectification [22] was made on both the transferred images. Further
processing was carried out on the preprocessed LISS-IV data as this data needs merely that much
preprocessing. The image was converted to the reflectance and spatial subset was designed using
ROIs. The implementation of fusion and classification algorithms was done on preprocessed data.
The data processingwas carried out through Environment for Visualizing Images (ENVI) 5.1 image
processing software and ArcGIS 10.0 software. The acquired images were from different sources
and satellite platforms. Hence in preprocessing we brought them in to same projection and
geographic coordinate system [22].

In the case of hyperspectral data, firstly, the raw image (GeoTIFF format) was transferred to
the ENVI standard format using ‘Hyperion Tools’. Secondly, orthorectification was done and
identified overlapped and uncalibrated water vapor bands [35]. As a result, total 87 bands were
identified as a bad and water vapor bands which were eliminated from further processing. The
Hyperion data was also converted to reflectance to identify the characteristics of spectral
features [35]. Lastly, atmospheric correction was done on the original hyperspectral bands
using the QUAC algorithm in ENVI 5.1 software [35]. The QUAC algorithm [35] was
implemented using Eq. 1.

Table 1 Some important Parameters of Hyperion and LISS-IV Data

Spacecraft/Instrument USGS EO-1/Hyperion NRSC (IRS) - P6 Resourcesat-II/LISS-IV

Product Type Level 1 T (GeoTIFF) GeoTIFF
Satellite Overpass Date 2015-03-21 21/02/2014
Orbit Path/Target Path 147/146 096
Orbit Row/Target Row 46/46 058
Spectral Range 355.59–2577.08 nm 520-860 nm
Number of Visible /Near Infrared

Bands/Short Wave Infrared bands
35/35/172 2/1/0

Spatial Resolution/ Number of
Bands/Swath Width

30 m/242/7.5 km 5.8 m/3/23.5 km

Spectral Coverage Continuous Broad
Temporal Resolution 200 days 5 days
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ρ ¼ ρ1 þ ρ2 þ…þ ρnð Þ=n ð1Þ
where, ρ are the end member spectrum of the surface and the average reflectance of
different materials, and n specifies the end member number.
After the atmospheric correction, the Hyperion image was processed using MNF

method to diminish the dimensionality and systematic noise caused by sensor and
processing anomalies during image analysis [27, 28]. The MNF method has been used
as a linear transformation modified with PC transform [27].
The spectral subset of Hyperion data was generated according to the wavelength range

of LISS-IV image. The LISS-IV image has three spectral channels ranging from 520 to
860 nm [16]. Thus, thirty five spectral channels of Hyperion MNF image was used for
fusion and rest of the 120 bands were skipped form the further processing. Utilized bands
from the Hyperion MNF image was ranging from 518.39–864.35 nm with 35 bands. The
pixel size of fused images was 5.8 m × 5.8 m. The original preprocessed Hyperion and
LISS-IV images are given in Fig. 1.

4.2 Satellite image fusion framework

Fusion of Satellite image can be made by combination of two or more images into a new
fused image using some fusion techniques [3]. Applicability of the fusion of satellite
images are varied as per its applications, complexity of the problem and variety of data
types. Moreover, image fusion is carried out for better visual interpretation though the
amalgamation of image modalities or various spectral uniqueness [34]. The fusion can be
classified into three levels (Pixel, Feature and Decision) based on the step at which image
fusion happens. (1) Pixel-based image fusion highlights the original information available
in the various images which afford subtle information and performed at the raw images
after co-registration. (2) Feature-level fusion is processed through feature extraction for
producing unknown features and mostly used for data compression. (3) Decision-level
fusion is processed on separate images and merely final results are fused for decision
making [28].
In this work, our aim was to enhance the classification efficiency and detection

methods. Therefore we have only considered pixel-level image fusion strategy [34].
The three different methods using pixel-level have given similar results (See
Fig. 15). Results obtained by CNSS fused image have found to be better than
corresponding results. In the present paper, pixel based image fusion approach is
implemented on the datasets for land cover classification. The Fig. 2 shows the
flowchart of proposed architecture of the developed fusion and classification
framework.
Three pixel based methods of image fusion viz. GST, PCSST and CNSS have

been used in the present study. The spatial and spectral information was extracted
from the complex features after the image fusion. Therefore, both the datasets
were converted to their appropriate format. The preprocessed images were used
for fusion and classification.
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4.2.1 Fusion using GST method

The spectral response factor of high resolution image is utilized by the GST
method. Meanwhile, GST is applied to fuse the transmitting synthesized high
spatial and low spatial resolution image. Firstly, the mean values and high
frequency variance of a high spatial resolution image is extracted. Subsequently,
the first factor of GST is replaced by the new high resolution image. Lastly, the
obtained set is inversely transformed for generating the high resolution image [4,
19, 42]. The GST algorithm was mathematically formulated by Eq. 2.

HSRI
LSRI1
⋮

LSRIN

0
BB@

1
CCA ⇒

GST

GS1
GS2
⋮

LSRINþ1

0
BB@

1
CCA ⇒

withmodifiedHSRI

ReplaceGS1

MHSRI
GS2
⋮

LSRINþ1

0
BB@

1
CCA ⇒

GST

inverse

X
F1

⋮
FN

0
BB@

1
CCA ð2Þ

where, HSRI is the high spatial resolution synthesized image merge transformed with
LSRI low spatial resolution images, MHSPI is the modified HSRI and F is the fused
images.

The Eq. 3 is implemented for GST method for constructing the synthesized high resolution
image.

HSRI ¼ 1

N
∑
N

i¼1
LSRIi↑ ð3Þ

where, HSRI is the synthesized image (high spatial resolution), LSRIi↑ is the up-scaled i-th low
spatial resolution image bands and N is the total number of LSRI.

4.2.2 Fusion using PCSST method

The PC algorithm is statistically accurate that restores a multivariate dataset of
correlated factors into a dataset of uncorrelated linear combinations of the factors.

Fig. 2 Flowchart of the proposed methodology
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This algorithm produces an uncorrelated feature space of LSRIs along with
converting the PCs according to the eigenvectors of their compatible covariance
matrices. First PCs comprises most of the data variance among all the remaining
bands. The HSRI is statistically adjusted to match with the PCs. Subsequently,
inverse PC transformation is executed on the obtained new set of PCs and high
resolution fused images are generated [4, 20, 42]. The mathematical procedure of
PCSST algorithm is given in Eq. 4.

LSRI1
LSRI2
⋮

LSRIN

0
BB@

1
CCA ⇒

PCT

PC1

PC2

⋮
PCN

0
BB@

1
CCA ⇒

withmodifiedHSRI

ReplacePC1

MHSRI
PC2

⋮
PCN

0
BB@

1
CCA ⇒

PCT

inverse

F1

F2

⋮
FN

0
BB@

1
CCA ð4Þ

where, LSRI is the low spatial resolution images, PC is the principal components, MHSPI is
the modified HSRI and F is the fused images. The PCT method is implemented by Eq. 5 for
fusion of used images.

Fi ¼ LSRIi↑ þ vi HSRI−PC1ð Þ ð5Þ
where, Fi is the i-th band in fused image, LSRIi↑ is the up-scaled i-th low spatial resolution
image bands, vi is the i-th element of most significant eigenvector and HSRI is the high
resolution image and PC1 is the first PCT of LSRI.

4.2.3 Fusion using CNSS method

The modified version of Brovey transform [18] is extended in CNSS algorithm
used in multispectral and improved for hyperspectral image sharpening. Concur-
rently, the CNSS method can be utilized for sharpening any band from the image
and preserve the input images original data type with varied range. The provided
input image channels are assembled into spectral segments defined by the spectral
range of the sharpening channels. The input bands (LSRI) is multiplied by the
HSRI sharpening bands and then resulted values are normalized by averaged LSR
data over the spectral bands in the segment (covered range of HSRI) [11, 15]. The
CNSS algorithm is mathematically calculated using the Eq. 6.

Fi ¼ LSRIi � HSRIð Þ
LSRIð Þs

ð6Þ

where, Fi is the sharpened image, LSRIi is the LSRI band, (LSRI)s is the band
averaged LSRI over the HSRI spectral bands in the segment (covered wavelength
range).
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4.3 Image classification

4.3.1 Training and testing samples

As per the survey of study area, eight (08) suitable classes were identified. These classes were
(1) Residential regions, (2) River sand, (3) Dense vegetation (4) Sparse vegetation, (5) Black
soil, (6) Roads, (7) Bare soil and (8) Water. The training and testing samples at ground level
for classification were carried out by GTPs, spectral-spatial features and visual information.
The Table 2 highlights the details of training and testing samples along with their color codes.

4.3.2 Pixel-based supervised classification methods

Digital image classification was attempted using two supervised based approaches viz. MLC
and SVM. The proposed fusion approach and original satellite images have been classified
with advance level statistical algorithms specifically appropriate to analyze the satellite images.
In the following section, we briefly recall the key properties of used classification methods for
our study.

Maximum Likelihood Classification (MLC) The MLC is one of the well-known and
popular statistical parametric methods used for supervised classification based on Bayes
theorem [13, 25, 32]. The pixel with maximum likelihood is classified into particular class.
The trainings to the particular spectral signature or the priory probability are used in MLC
method. Thus, the misclassification is reduced for each class. According to the Bayes formula,
an implementation of MLC method is defined using the posterior probability. Thus, the class
of a posterior probability is defined as given in Eq. 7:

p Cj=Xð Þ ¼ p X=Cjð Þp Cjð Þ
∑m

j¼1p X=Cjð Þp Cjð Þ ð7Þ

Table 2. Image Classes, Training and Testing Pixels for Multispectral and Hyperspectral Image along with
classification color codes of classes.

Class Name
Multispectral 

Image
Hyperspectral 

Image
Training 

Pixels
Testing 
Pixels

Training 
Pixels

Testing 
Pixels

Classification 
Color of Classes

Residential 

Regions

71 176 389 414

River Sand 232 353 464 762

Dense Vegetations 47 68 434 615

Sparse Vegetations 124 182 414 517

Black Soil 114 239 393 633

Roads 45 58 419 476

Bare Soil 67 114 378 530

Water 47 63 397 514

Multimedia Tools and Applications (2020) 79:34737–3476934746



where, p(Cj) is the prior probability of class Cj and p(X/Cj) is the conditional probability of
observing X from class Cj (probability density function). Thus, the computation of p(Cj/X) is
reduced to determination of p(X/Cj). The maximum likelihood function p(X/Cj) can be
expressed as given in Eq. 8,

p X=Cjð Þ ¼ 1

2πð Þn=2 ∑ jj j0:5
� exp −

1

2
DN−μjð ÞT∑−1

j DN−μjð Þ
� �

ð8Þ

where, DN = (DN1, DN2, …DNn)T is the vector of pixel with n number of bands μj = (μj1,
μj2, .. …μjn)T is the mean vector of the class Cj and ∑j is the variance-covariance matrix of
class Cj which can be written as given in Eq. 9 [13]:

∑ j ¼
σ11 σ12 … σ1n
σ21 σ22 … σ2n
… … … …
σn1 σn2 … σnn

2
664

3
775 ð9Þ

Support Vector Machine (SVM) The SVM is the statistical advance supervised machine
learning method which is widely used for various applications of remote sensing [12, 14]. The
two main reasons behind the use of SVM is: (1) the training samples are required less and its
architecture is easy, (2) with less training samples, produces better accuracy [22]. The SVM
algorithm is rely on fitting a separating hyperplane which can offer the best separation between
two classes in a multidimensional feature space.

In this study, Gaussian Radial Basis Function (RBF) was considered as the kernel
function for identifying suitable hyperplane. The mathematical implementation of RBF
is shown in Eq. 10.

Gaussian Radial Basis Function (RBF):k(xi, xj) = exp(−γ • ‖xi − xj‖2),γ > 0 (10).
where,γ is the kernel constant parameter.

4.4 Accuracy assessment

The accuracy assessment was done in ENVI 5.1 software. Testing samples acquired
from the field campaign were used. Error matrix was used to compute values of
overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA) and Kappa
statistics [36]. The Kappa (K) is a statistical test that quantifies the accuracy of the
classification ranging from −1 to 1 [13]. The columns of error matrix correspond to
the reference samples, whereas rows to the classified samples. The diagonal number
of the error matrix represents the correctly classified pixels [39]. The OA, PA, UA
and K-values are calculated by Eq.s (11), (12), (13) and (14) respectively [13].

OA ¼
∑
A

x¼1
Cxx

N
� 100% ð11Þ

where, N and A is the total number of pixels and classes respectively and Cxx is the
element of confusion matrix at position xth row and xth column (diagonal values).
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PA ¼ Cxx
∑c

� 100% ð12Þ

where,Cxx is the element at position xth row and xth column and ∑c is column sums.

UA ¼ Cxx
∑r

� 100% ð13Þ

∑r is row sums.

k ¼
∑
r

i¼1
Xii−∑ci∑rið Þ

N2− ∑
r

i¼1
∑ci∑rið Þ

ð14Þ

where, k=kappa statistics, r= number of rows and columns in the error matrix, Xii= number of
observations in row i and column i, ∑ci= marginal total of column i, ∑ri= marginal total of
row i, N= total number of observations.

5 Results and discussion

5.1 Preprocessing of the datasets

Original Hyperion image was atmospherically corrected by QUAC algorithm to
correct atmospheric effects due to atmosphere [35]. The Fig. 3 shows the spectral
profile of vegetation class before and after atmospheric correction.

It can be seen from the Fig. 3 that raw data had dominated by radiance values. So it
was difficult to extract the classes from the radiance data. When applied QUAC
model, the gap between wavebands were converted into reflectance spectra for the
whole spectrum. So hyperspectral satellite data classification is not suitable without
atmospheric correction.

The vegetation feature was extracted using Normalized Difference Vegetation Index
(NDVI) [31] spectral index (Eq. 15) with the fused datasets.

NDVI ¼ R864nm−R671nmð Þ
R864nm þ R671nmð Þ ð15Þ

where, R denotes the reflectance at the bands given by the subscripts.

Fig. 3 Spectral profile of vegetation before and after atmospheric correction (QUAC)
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The bright color of Fig. 4a, indicates the vegetation regions. It was verified by the NDVI
values with the corresponding field data. The values of NDVI corresponding to these bright
areas were found to be more than 0.70. The vegetation regions were correctly extracted from
the all images. The MNF 2 and MNF 3 highlighted the residential region, river sand and roads
(see Fig. 4c and d). The rest of the MNFs were not used due to their poor performances.

5.2 Hyperion and LISS-IV data fusion

We have also explored performance of fusion methods and fused data for classification. Three
fusion algorithms, CNSS, GST and PCSST, were implemented. The spectral profiles were
generated for each class and compared with original hyperspectral data. The Fig. 5 indicates
the output of fused images as obtained by CNSS, GST and PCSST using Hyperion and LISS-
IV images.

These fused images were visually interpreted for selecting the appropriate classes. The ROI
detection was done using histograms of the image and band thresholding algorithm [21]. As a

Fig. 4 a NDVI, b MNF 1, c MNF 2, d MNF 3, e MNF 4, f MNF 5, g MNF 6, h MNF 7 and i MNF 8

Fig. 5 The output of (a) CNSS, (b) GST and (c) PCSST fused images
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result, fused images obtained by the CNSS and PCSST appeared to be better as compared to
the images computed by the GST. The fused images obtained by the GST have more color
variations as compared to the original data, though fused images by the PCSST have provided
satisfactory results. On the other hand, Classification results obtained by the CNSS and GST
were better.

The spectral profiles were generated for every fused image and compared with original
hyperspectral spectra. All the spectral profiles were accurately matched with original spectra.
Moreover, spatial information along with spectral information was extracted from the fused
images. The Figs. 6, 7 and 8 show the computed spectra for each class. Some classes were
slightly affected due to fusion effect. Spectral signatures corresponding to residential class
were similar as obtained by the fused and the original images. However, spectra of fused
images were slightly lower at wavelength around 700 nm as compared to original data. The
river sand and residential class spectra were similar to the PCSST fused image and original
data. This is due to similar characteristics of both classes. The spectra corresponding to river
sand class were similar as derived from the CNSS and GST.

Similarly, values of reflectance corresponding to dense and sparse vegetation have higher
values at the NIR region of spectrum. The spectral profile was alike to original and PCSST
fused image of dense and sparse vegetations. The CNSS and GST fused images have provided
related spectral information for both the vegetation classes. Nonetheless, results obtained by
the spectra of sparse vegetation somewhat lower corresponding results from the GST and
CNSS methods.

Black soils have various chemical, physical and biological properties and additionally they
have different amount of moisture and clay. Due to the reason, one expects to have varied
spectra for black soil. The spectral characteristics of black soils may also vary according to the
geolocation. However, the spectra of black soil are matched with PCSST fused image. Spectral
reflectance of bare soil (original image) obtained by all three fused images were not very
different. The spectral information of road class was found to be varied for the fused images.
The original hyperspectral and PCSST fused image have produced higher reflectance of road

Fig. 6 Spectral profiles of (a) original hyperspectral image, (b) CNSS image, (c) GST image and (d) PCSST
image for residential region, river sand and dense vegetations respectively
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class as expected. Similarly spectra generated through the CNSS and GST fused images were
found to be with some variation.

As per the knowledge of visual interpretation, these two methods have produced spectral
mixing of other classes. The road class is matched with river sand and residential region due to
its similar spectral properties. The water was less during March, 2015 in the studied region.
Hence, corresponding spectra of water class was not reliable from the original hyperspectral
images. The high reflectance is found to be more in visible region for the water class. Fused
images by the PCSST have produced reliable spectra.

The supervised classification techniques, viz. MLC and SVM, were applied using spatial
features and spectral profiles derived by original images (Hyperion and LISS-IV), three types
of fused images due to CNSS, GST and PCSST algorithms along with data collected at ground
level. Details are given in the next section.

Fig. 7 Spectral profiles of (a) original hyperspectral image, (b) CNSS image, (c) GST image and (d) PCSST
image for sparse vegetations, black soil and roads respectively

Fig. 8 Spectral profiles of (a) original hyperspectral image, (b) CNSS image, (c) GST image and (d) PCSST
image for bare soil and water respectively
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5.3 Training and testing samples

Nearly, 747 and 1253 pixels were identified and randomly selected as samples for training and
testing, respectively. Likewise, the hyperspectral and fused datasets were individually trained
and tested by 3288 and 4461 random pixels respectively. Selected individual training samples
for each class is given in Table 2 for both the datasets and fused images along with their color
codes of eight different types of objects. The training and testing samples were derived from
the images according to the field campaign, ground reference data, spectral information of each
class (Figs. 6, 7 and 8), spatial structure of objects, users knowledge about the satellite image
and image patterns (shape, size, standard false composite color, texture, etc.). The separate
training-testing pixels were used for LISS-IV data due to dissimilar structures of datasets.
However, Hyperion and fused images were trained and tested through similar number of
samples (3288 and 4461) acquired at ground level.

5.4 Results of MLC based classification

The original images were individually classified using MLC method. The spectral features
were calculated and used for classification of data. The said training samples were inputted to
the MLC based supervised method in ENVI 5.1 software. The additional input variables
required for the MLC were probability threshold values and data scale factor. Accordingly,
probability threshold value for each class was assigned as 0.05 and data scale factor as 1. The
resulted output map is illustrated in Fig. 9 for original multispectral data.

The results indicate that the classes except the class related to road (road class) have been
identified accurately. The road class was misclassified with bare soil due to spectral similarity.
The accuracy was measured by confusion matrix for the original LISS-IV classification image
derived by MLC method. The results corresponding to accuracy assessment with confusion
matrix are given in Table 3 along with computed values of OA, UA, PA and K-coefficient.

From the Table 3 it may be seen that the MLC method gives satisfactory values of overall
accuracy (83.15%) and kappa (k) 0.77. The minimum value of accuracy was 60.53% for the
bare soil class. Similarly corresponding to dense vegetation class, the value of accuracy was
low (63.24%). The residential regions (71.02%), river sand (86.97%) and road (81.25%)
classes were classified with better accuracy. The reason behind the low accuracy may be the
spectral confusion between these classes.

Fig. 9 MLC classification output
layer of original LISS-IV image
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In similar manner, original hyperspectral image was also used for classification using the
MLC method. The thematic map of hyperspectral data used in the MLC is shown in Fig. 10. It
can be seen from the Table 4 that the results were not found to be satisfactory as compared to
corresponding results obtained through LISS-IV image.

The Table 4 highlights, the spectral confusion between roads and residential regions. The
lowest producer’s accuracy was 0% for water class due to misclassification of water with
sparse vegetations. Whereas, second lowest accuracy for the class of residential region was
(32.76%) and roads (50.00%). The overall accuracy for the classified original Hyperion data
was 69.25% and kappa coefficient was 0.63 which is not satisfactory.

Similar computations have been done through fusion images obtained through fusion
methods using CNSS, GST and PCSST techniques applied on Hyperion and LISS-IV images.

The Fig.11 gives illustrations of output thematic maps generated by MLC classification
method on CNSS, GST and PCSST fused images. It can be seen from the Figs.11a–c that each
class is classified in satisfactory manner. However, water class is identified and classified by
all the three methods. The more validation was done by accuracy assessment and confusion
matrix results. The Table 5 gives detail classification results for all objects, whereas the Table 6
gives values of accuracy assessment results.

The producer’s accuracy for the class of residential regions, dense and sparse vegetations,
bare soil and water was 100% using CNSS fused image. PCSST fused image have produced
very low PA for water class, moderate PA for river sand and black soil. Similarly, water class

Table 3. Accuracy assessment results and confusion matrix of MLC classification of original LISS-IV data. OA-
overall accuracy, UA-users accuracy, PA-producers accuracy, CE-Commission Error, OE-Omission Error and K-
Kappa Coefficient

Classes PA (%) UA (%) CE (%) OE (%) OA K-Value

Residential Regions 71.02 72.67 27.33 28.98 83.15% 0.77
River Sand 86.97 87.22 12.78 13.03
Dense Vegetations 63.24 89.58 10.42 36.76
Sparse Vegetations 97.25 85.10 14.90 2.75
Black Soil 94.56 83.39 16.61 5.44
Roads 81.25 69.64 30.36 18.75
Bare Soil 60.53 94.52 5.48 39.47
Water 100.00 100.00 0.00 0.00

Fig. 10 MLC classification output
layer of original Hyperion image
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has given very less PA for GST fused image and river sand. Hence, river sand and water class
misclassified with residential and vegetation classes respectively. The overall performance of
the MLC classification for CNSS, PCSST and GST fused images were 94.55, 87.34 and 83.
87% with 0.93, 0.83 and 0.80 kappa coefficients respectively.

The results indicate that compared with original hyperspectral data, the CNSS fused data
improved overall accuracy by 25% (69.25 to 94.55%) compared with MLC based classifica-
tion. The CNSS fused data improved overall accuracy by 11% (83.87 to 94.55%) and 7%
(87.34 to 94.55%) compared with GST and PCSST fused images respectively. The overall
accuracy (94.55%) of our proposed approach was better than the accuracy (87.95%) of authors
[1] and the accuracy (91.1%) as reported earlier [28] with MLC method. Thus, the MLC
classification based on CNSS fused image performed very well as compared to GST fused
image.

5.5 Results of SVM based classification

The SVM classifier can be carried out with four kernels viz. linear, polynomial, radial basis
and sigmoid functions [29]. In the present study, Gaussian RBF kernel was used for
conducting the SVM based classification. The reason behind the use of RBF kernel is because
of its better performance and simplicity [38]. Moreover, the rest of the kernels of SVM
technique was also implemented and tested on original images. The accuracy and classification
results were found to be not satisfactory. Therefore it was decided to use only RBF kernel. The
gamma value in RBF kernel function was set as 0.33, penalty parameter was selected to its
highest value i.e. 100 to reduce the misclassification during the training [29], and pyramid
level was selected as first. Pyramid reclassification threshold was selected to be 0.90 with

Table 4. Accuracy assessment results and confusion matrix of MLC classification of original Hyperion data.
OA-overall accuracy, UA-users accuracy, PA-producers accuracy, CE-Commission Error, OE-Omission Error
and K- Kappa Coefficient

Classes PA (%) UA (%) CE (%) OE (%) OA K-Value

Residential Regions 32.76 76.00 24.00 67.24 69.25% 0.63
River Sand 85.94 60.44 39.56 14.06
Dense Vegetations 94.12 100.00 0.00 5.88
Sparse Vegetations 68.18 93.75 6.25 31.82
Black Soil 100.00 56.25 43.75 0.00
Roads 50.00 43.48 56.52 50.00
Bare Soil 82.14 65.71 34.29 17.86
Water 0.00 0.00 0.00 100.00

Fig. 11 MLC classification output layers of fused (a) CNSS, (b) GST and (c) PCSST images respectively
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classification probability threshold 0.20. The Fig. 12 shows the output map of original
multispectral image classified by SVM method. The training pixels were selected as per the
standard and each class was satisfactorily classified.

The Table 7 contains values of the PA, UA, OA and Kappa coefficient of SVM based
classification results from original multispectral image. The overall accuracy and its kappa
value (86.20% and 0.82) were good as compared to MLC method for LISS-IV data.

The accuracy for the bare soil and dense vegetation classes were 63.16% and 66.18%
respectively. Corresponding values for the water (100%), sparse vegetation (98.35%) and
black soil (99.16) were very good.

In addition, the original hyperspectral image was also classified by SVM approach (Fig.
13). The confusion matrix and classification accuracy of original Hyperion image is given in
Table 8.The overall accuracy of original Hyperion based on SVM classifier produced 74.44%
with kappa coefficient 0.69. Classifications of bare soil and black soil were found to be not
satisfactory here also, so same for sparse vegetation.

From the Fig. 13 and Table 8, it can be seen that overall classifications were not
satisfactory. The value corresponding to water class was found to be 0 % due to unavailability
of water in March, 2015 in the study area. Hence, the water body seems like residential region
or roads. Moreover, the spatial structure, spectral characteristics, and color of the said classes
were similar, so unable to do proper classification (Fig. 13 and Table 8). To overcome the
limitations of using only single hyperspectral data, proposed fusion approach was applied on
the Hyperion and LISS-IV data. The multispectral data was of February, 2014 and
hyperspectral data of March, 2015.When fusion was performed, some of the multispectral
classes were mixed with the hyperspectral data i.e. water class. The classified thematic maps of
fused data by CNSS, GST and PCSST based SVM classifier are given in Fig. 14.

Table 6 Comparison of overall accuracy of MLC classification results using fused LISS-IV and Hyperion data

Datasets MLC method

Overall Accuracy (%) Kappa Coefficient

CNSS fused data 94.55 0.93
PCSST fused data 87.34 0.83
GST fused data 83.87 0.80

Fig. 12 SVM classification output
layer of original LISS-IV image
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After performing fusion, PCSST algorithm generated accurate results for each class (Fig. 14c).
Alternatively, CNSS and GST methods have given slightly related spectral information for each
class. However, water class does not provide well with both methods (Fig. 14a and b). The
confusion matrix of three methods is detailed in Table 9. The class-specific validation was carried
out through accuracy assessment and confusion matrix. The dense vegetations and black soils were
accurately classified for all the three fused methods using SVM algorithm. The class of residential
region, river sand, bare soil and water was produced alike to each other with good accuracies. Yet,
sparse vegetations were misclassified with roads. The overall accuracy of classification with SVM
method based on these three fusion algorithms was calculated with its appropriate kappa statistics.
The Table 10 highlighted the overall accuracy and kappa values of SVM based classification on
fused images.

The overall accuracy of CNSS, PCSST and GST fused approaches were 97.65%, 97.47% and
96.30 and kappa valueswere 0.97, 0.96 and 0.95 respectively. It was observed that, the classification
accuracy by pixel based SVM method was found to be 97.65% which is better than the results
(77.33% for land cover) reported earlier [42]. Similarly, the accuracy was 97.65% better as
compared to results achieved by [9] for urban land cover areas.

Table 7 Accuracy assessment results and confusion matrix of SVM classification of original LISS-IV data. OA-
overall accuracy, UA-users accuracy, PA-producers accuracy, CE-Commission Error, OE-Omission Error and K-
Kappa Coefficient

Classes PA (%) UA (%) CE (%) OE (%) OA K-Value

Residential Regions 72.73 75.29 24.71 27.27 86.20% 0.82
River Sand 89.80 86.38 13.62 10.20
Dense Vegetations 66.18 93.75 6.25 33.82
Sparse Vegetations 98.35 87.75 12.25 1.65
Black Soil 99.16 85.56 14.44 0.84
Roads 75.00 94.74 5.26 25.00
Bare Soil 63.16 94.74 5.26 36.84
Water 100.00 100.00 0.00 0.00

Fig. 13 SVM classification output layer of original Hyperion image
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The overall accuracy given in reference [9] was reported to be as 90.30% whereas the Table 10
corresponding to the present work shows higher accuracy. The CNSS fused image enhanced overall
accuracy by about 23% (74.44 to 97.65%) compared with the SVM algorithm. Further discussions
about these results are given in the next section.

5.6 Discussions

5.6.1 The comparison and performance of MLC and SVM algorithms on original
and fused data

When we applied SVM and MLC methods on original images the accuracy was not found to be
satisfactory (See Fig. 15). It was found that by using fused images it was enhanced by more than 10
and 20%. The results of overall accuracy are summarized in Fig.15. It can be seen very easily that in
all cases the SVMmethod found to be superior as compare to theMLCmethodwhen applied to five
different types of images.

The original LISS-IV data is found to be superior to the original Hyperion data. It is possible to
enhance accuracy by about 3 to 5%. It can also be seen that the fusion images as extracted from
LISS-IV and Hyperion are found to be better than the original two images. The fusion improves
accuracy significantly about by order of 15 to 20%. The values of kappa coefficients given in the
Fig.16 show similar trend.

Nevertheless, the spectral confusion between residential regions, river sands and roads is
common as these class spectra are related to each other. Similarly, road class normally misclassified
due to overlapping of some other classes namely bare soil, residential region or river sand.
Moreover, the spectral behavior of road class is similar to bare soil, buildings and river sand.

Table 8. Accuracy assessment results and confusion matrix of SVM classification of original Hyperion data.
OA-overall accuracy, UA-users accuracy, PA-producers accuracy, CE-Commission Error, OE-Omission Error
and K- Kappa Coefficient

Classes PA (%) UA (%) CE (%) OE (%) OA K-Value

Residential Regions 32.76 76.00 24.00 67.24 74.44% 0.69
River Sand 85.94 60.44 39.56 14.06
Dense Vegetations 94.12 100.00 0.00 5.88
Sparse Vegetations 100.00 95.65 4.35 0.00
Black Soil 100.00 100.00 0.00 0.00
Roads 50.00 43.48 56.52 50.00
Bare Soil 82.14 65.71 34.29 17.86
Water 0.00 0.00 0.00 100.00

Fig. 14 SVM classification output layers of fused (a) CNSS, (b) GST and (c) PCSST images respectively
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Additionally, the size, shape, structure and tone of the road class are alike to the said classes which
caused the misclassification. Furthermore, the black soil and bare soil is also having alike spectral
information, accordingly, confusion was increased. Similarly, spectral information of dense and
sparse vegetations is also related to each other.

Overall, both the satellite datasets were acquired on different date, month and year which
causes the error for some classes like water, soil and vegetations as these classes vary
according to time. Nonetheless, the field campaign, user knowledge of ground objects as well
as satellite data produced better training samples for the data. Furthermore, reference data was
suitable and Google map and Google earth was used for validation of the identified objects.

It was found from the above results that the classes were successfully identified. However, more
features may be aimed to be identifying from the residential region due the availability of various
patterns in these areas. For this very high spatial resolution (less than 1 m) image is essential for the
detection of fine details of urban features. Since, the images (LISS-IV and Hyperion) were of 5.8 m
and 30 m spatial resolution which is not good enough to identify fine details. Consequently, we
considered residential region as one of the class which includes buildings, barren lands, parking’s
and other urban features. In some cases, some classes were misclassified due to spectral and spatial

Table 10 Comparison of overall accuracy of SVM classification results using fused LISS-IV and Hyperion data

Datasets SVM method

Overall Accuracy (%) Kappa Coefficient

CNSS fused data 97.65 0.97
PCSST fused data 97.47 0.96
GST fused data 96.30 0.95

Fig. 15 Comparison of overall accuracies for MLC and SVM classification results
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similarities in patterns. Other superior classification techniques like neural network, decision tree
classifier, knowledge-based or expert system classification with the use of ancillary data (such as
DEM, topography, soil maps, census data and existing GIS-based maps) may be helpful in
extracting and classifying minute details (or misclassified classes) [26].

6 Conclusions and future scope

The contribution of the present study is to propose and implement novel fusion
approach using Hyperion and LISS-IV data. As per our knowledge, the proposed
methodology is novel and only few studies have worked on fusion of hyper and
multispectral image for classification of complex environments.

In this work, fusion images using three different techniques (CNSS, PCSST and GST) were
generated by using two original satellite data, viz. the Hyperion and LISS-IV images corresponding
to the AOI. These three fusion images along with two original images have been used to get
information about theAOI.Objects on theAOIwere classified in eight classes and suitable field data
have also been acquired for all classes. The classification techniques, viz.MLC and SVMhave been
used to extract information about in the AOI. This study has enabled us to get following findings:

1) The original Hyperion and LISS-IV image classification based on MLC classifier pro-
duced moderate classification accuracy, whereas SVM classifier produced better results
with better accuracy.

2) The fusion of both the datasets enhanced the overall accuracy by 25% from 69.25 to
94.55% for MLC classification method. On the other side, SVM was highly increased the
accuracy by 23% from 74.44 to 97.65%.

Fig. 16 Comparison of kappa values for MLC and SVM classification results
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3) Overall, the class-specific accuracy and total accuracy was quite better with SVM
approach as compared to MLC technique for LISS-IV data, Hyperion data, CNSS,
PCSST and GST fused datasets.

4) The class-specific accuracies were also enhanced with SVM method for all the datasets as
compared to theMLC.

5) The CNSS fusion algorithm was acceptable for both the classification methods due to its best
performance with 94.55% and 97.65% overall accuracy.

6) It is concluded that, all the three fusion methods were performed as per the fusion algorithm
expectations. The hyperspectral image has produced its spatial features after its fusion with
multispectral image. Therefore, the spectral and spatial information was jointly extracted from
the fused images and it is confirmed with classification accuracy results.

7) The present research will be valuable for better land management and its planning as well for
decisionmaking of land and its objects. In addition, this researchwill be the case study for other
worldwide researchers for implementing similar type of study for other regions with
hyperspectral and multispectral images for the classification of mixed features.

In the future work, the LiDAR data, hyperspectral data, multispectral and PAN data will be used for
fusion for classificationofmore complex area.Moreover, the efficiency of the fusionmethodswill be
checked and validated. In future, more superior techniques like neural network, genetic based
algorithm etc. may also be used for the study.
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