
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 44, March 2019

25

A Comprehensive Study on Multi Tenancy in SAAS

Applications

Shruti Kanade
Dr B.A. M. University
Aurangabad, India

Ramesh Manza, PhD
Associate Professor

Department of CS and IT
Dr B.A.M. University
Aurangabad, India

ABSTRACT
In the age of cloud computing or utility computing, multi-

tenant applications mainly Software as a Service (SaaS)

applications have been popularly acknowledged as the

generation next of Internet applications. These applications

allow various organizations or tenants to modify (customize)

an application in a robust and reliable manner. However, this

customization according to the user organization’s perspective

can be error-prone, so research is being carried out to develop

SaaS applications based upon different frameworks, platforms

and modelling approaches. Multi-tenancy is an architectural

approach in which a single instance of a application serves

more than one customer who are referred to as tenants.

In this paper, the researcher has made a broad survey to

understand the various features of the issues concerned with

multi-tenancy. The results of the study should be used to

understand the pros and cons of these aspects as well as to

identify the areas of future research.

Keywords
Multi-tenancy, SAAS application, Cloud computing,

1. INTRODUCTION
Cloud computing [1] is a modern technique which is

principally based on Grid, Utility computing, adopted by

organizations and businesses alike to help increase profit

margins by decreasing overall IT costs and provide clients

with better implementation of services. Main service models

include Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS) also have

Communication as a Service (CaaS) and Data Storage as a

Service (DSaaS).

The various parameters of the cloud such as elasticity,

metered usage, on-demand service, broad network access

allow the services to be distributed or shared equally among

users and organizations. The sharing of resources, infra-

structure, bare hardware and mainly data account for multi-

tenancy at all layers of the model.

The majority [1] of cloud service providers offer multi-

tenancy to reduce incurring IT costs which translate into

economic savings for the user.

Multi-tenancy is a well-known concept used to reduce total

cost of ownership. In the multi-tenancy model, many tenant’s

data are stored in the same public cloud and are controlled and

bifurcated according to the user through use of tagging of

resources owned by the user.

The meaning of multi-tenancy framework has enlarged due to

creation of new service models that take advantage of

concepts like virtualization and remote access. A SaaS

provider can run one instance of the common application on

one instance of the database and provide application access to

multiple tenants. The concept of multi-tenancy is such that a

single instance of the software application can serve multiple

clients.

Each customer is a tenant, who is given rights to change user

interface or business rules as he requires. The tenant cannot

customize application code. This is the basis of multi-tenancy

as implemented at SaaS layer. With SaaS, clients are sourcing

same application (SalesForce.com) meaning that data of

various tenants is stored in same database and they share the

same database tables.

However, multi-tenancy introduces uncommon security risks,

which are yet to be considered in a serious manner. The risks

of multi-tenancy is access of data or trace of operations by

other tenant.

When it comes to security issues, risks impacted by multi-

tenancy require to be addressed at all layers which include

IaaS, PaaS and SaaS

2. MULTI-TENANCY IN SAAS

APPLICATIONS
Multi-tenancy is one of the main ascepts in SaaS. It is an [3]

architectural principle that makes it possible for SaaS

application to serve more than one tenant using a single

instance of service. Multi-tenancy occurs at the database layer

here.

In this phenomenon, customers/ tenants share the same

hardware resources, by using the single application and

database instance which is shared, while remaining isolated

from each other. Since the application code is stored at one

place, it is easier not only to maintain and backup but also

update application and data. Another essential advantage is

low system requirements. It is unnecessary to have a

dedicated server for each client [3]. Resource utilization is

near optimal.

Like two sides of the same coin, multi-tenancy poses several

challenges and difficulties as well. They are:

 Performance: Amount of resources distributed to

each tenant may result in inefficient utilization of

resources

 Scalability: Tenants from different geographical

locations may use same application, which has an

impact of scalability.

 Security: A security violation may result in

exposing data of other tenants

These are the areas where research is conducted to mitigate

the challenges. Multi-tenancy requires that application

methods and database table access and store data from

different tenant accounts which violates security. But if done

in error free manner, benefit is cost savings. For simple web

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 44, March 2019

26

applications, this concept is a solution, as a single developer

develops it and can do it faster as well as scale it.

3. SECURITY ISSUES IN MULTI-

TENANCY
Security violations in multi-tenancy are fundamental in every

layer of cloud like IaaS, PaaS and SaaS. This occurs due to

the fact that client’s employ the same hardware to share and

process information.

This introduces a number of risks in terms of compliance,

security and privacy, as well as lack of user network isolation

[1]. Data stored in such application is stored in the same

database and accessed by tenants using different partitions. A

tenant is any application – inside or outside the enterprise-

that needs its own secure and mutually exclusive virtual

computing environment.

This environment encompasses all or some layers of

organization architecture from database to web forms. One of

the highlighted issues while using this type of multiple

services is ensuring data isolation. Managing data is very

critical. All users require privacy. Multi-tenancy and lack of

network isolation [1] among clients result in making public

clouds susceptible to attacks.

 Side channel attacks and interference among various domains

create issues in distributed clouds. The researcher may

suggest that current approach to access controls in clouds do

not scale well to requirements posed by multi-tenancy as they

are based on individual tenant’s IDs. Multi-tenancy increases

security risks naturally.

Cloud Service Providers are responsible for making sure that

one tenant cannot break into another tenant’s data and

application. To provide secure multi-tenancy [1], a well-

defined method to enable separation at all layers is required.

 Application layer: A precisely written multi-

tenant application or multiple instances which

are separately used can provide multi-tenancy

here

 Server layer: This means separation of tenants

and application instances on servers and

controlling utilization and access to resources.

 Network Layer: IP security provides network

encryption at IP layer for additional security

 Storage Layer: Entries at partition layer should

be encrypted so that data is secured. Sharing data

poses risks such as intellectual property

infringement, data infringement, technical and

industrial business sabotage

Current approaches to access control are infeasible to multi-

tenancy requirements, as they are mostly accessed using

individual user IDs. Cloud providers take responsibility for

ensuring that one tenant cannot break into another tenant’s

data and application

4. WHY MULTI-TENANCY IS

NECESSARY
The multi-tenancy architectural approach [4] is beneficial to

both cloud service providers and the end users. Enterprise can

customize an application. The application dynamically

morphs for every single need. A multi-tenant application is

similar to a large community hosted by cloud service

provider. Development as well as maintenance costs are

reduced

Tenants can operate in virtual isolation. The cloud service

providers can get feedback on application operations which

can be improved in common hardware and software so that

entire community benefits at once. Multi-tenancy is

appropriate for small startup enterprise or single developer [5]

to develop software quickly at a reasonable price, and to

create concepts for widgets and web applications.

Applications on mobile and small business applications with

less security requirements are based on innovation, response

time and ease of use

5. HOW TO CHOOSE APPROPRIATE

TENANCY MODEL
The tenancy model does not have an effect on the function of

the application, but has an impact on the other factors of the

solution. The assessment of the model is based on the

following criteria:

 Scalability of the application which depends on

number of tenants, storage per tenant, storage in

aggregate and workload

 Tenant isolation includes data isolation and

performance

 Per tenant cost which is same as database cost

 Development complexity includes changes to

schema and changes to queries

 Operational complexity depends upon monitoring

and managing performance, schema management,

restoring a tenant and disaster recovery

 Customization depends upon ease of supporting

tenant specific or tenant class specific schema

customizations. If you divide the software into

many small components, your choice of multi-

tenancy model may change. You must carefully

choose a model that best fits the need of your

application.

6. ARCHITECTURAL ISSUES OF

MULTI-TENANCY
Authors on multi-tenancy argue that this can become a

concern cutting across a SaaS application. Generally a tenant-

specific mechanism is used to authenticate tenants to access

only their data. Further mechanism can be devised to facilitate

tenants to customize specifically their own application, so that

user gets a feeling that he is working in a dedicated

environment.

Data isolation is a major requirement. But most of the current

DBMS are incapable of dealing with multi-tenancy as a layer

between Business logic and applications. There are two main

kinds of architecture of multi-tenancy

 Complete Multi-tenant [9]: This is the purest form

of multi-tenancy. This can be called “shared

everything model”. All resources like infra-

structure, applications and database are shared

among all tenants. It makes sure that all resources

are used optimally. But this model requires a very

complex architecture to implement multi-tenancy.

It creates business risk. And it is difficult to

customize as well as implement load balancing.

 Single Tenant database: Here, application layer is

shared among all the tenants. Database is separated

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 44, March 2019

27

by tenant. Force.com has adopted meta-driven

architecture to achieve multi-tenancy.

Everything as seen by developers and application users alike

is represented internally as meta-data. It is required that we

maintain a balance between various factors effecting the

application considered, like affinity and persistence,

performance isolation, service differentiation and

customization. Affinity [7] defines how requests of different

users of the same tenant are bound to processing nodes of a

single cluster

The SAP Business BYDesign solution was developed having

an affine behavior in consideration due to high amount of

caching. Other applications like those based on Google’s App

Engine are based on low tenant specific context.

This means that one tenant might be accessing several

instances of multi-tenant application. Performance isolation

exists if for tenants working on their quota, the SLAs are

fulfilled. Weak-isolation is achieved if performance isolation

is achieved within a number of requests sent by disruptive

tenants.

Google’s App Engine provides automatic horizontal elasticity

for multi-tenancy application. However it is not tenant

specific and does not ensure performance isolation even if

elasticity is restricted. Qos differentiation is indirectly related

to isolation concepts.

The ability to handle different tenant specific configurations

regarding the User Interface, the systems

functional/nonfunctional behavior and the services referenced

is a key enabler for multi-tenant applications. A separate Meta

-data manager provides customization information to adapt

the application. An application allowing tenant specific code

extensions provides most appropriate way to adapt it to

customer's needs.

Google Docs4 provides office applications for private usage

or small scale companies for customer specific customizing.

Other SaaS providers like Salesforce provide a wide range of

options including tenant specific code.

7. CONCLUSION
Cloud computing has recently emerged as a computing

paradigm [10] for managing and delivering services over the

Internet.

The concept of cloud computing is rapidly changing the

scenario of IT and turning the promise of utility computing

into a reality. Despite the benefits offered by cloud

computing, its full potential has not been realized as current

trends and technologies are not mature enough to do so. Many

key challenges are yet to receive attention from research

community.

So the researcher believes that this field offers a tremendous

opportunity, particularly in multi-tenancy. In this paper, the

researcher has surveyed the state-of-art of multi-tenancy in

cloud, covering essential concepts, architectural design,

prominent characteristics and research directions.

As this concept is still at an early stage, it is hoped that this

paper will provide a better insight of design challenges of

multi-tenancy in cloud and pave way for future research.

Multi-tenancy [11] is often seen as a benefit to cloud service

provider, but it comes with a security risk. When security

comes first we need to eliminate this risk. But the valuable

feature of VM allocation will not be possible in such a

scenario. And it will cause performance degradation that is

non-optimal level of utilization of resources.

8. REFERENCES
[1] K. Venkataramana, Prof M. Padmathavamma, “Multi-

tenant Data Storage Security In Cloud Using Data

Partition Encryption Technique”, July 2013,

International Journal of Scientific and Engineering

Research

[2] Kaushal Jain, Bimal Kumar, Harshal Shah, “Degree of

Multi-tenancy and its Database for cloud computing”,

ISSN-2321-9939

[3] Pallavi G B , Dr P Jayarekha, “Multi-Tenancy in SaaS :

A comprehensive survey” July 2014, International

Journal of Scientific and Engineering Research

[4] Shailesh Paliwal, “Cloud application Services SaaS-

Multi Tenant Data Architecture”, Infosys Technologies

Ltd.

[5] https://www.ibm.com/developerworks/cloud/library/cl-

multitenantcloud/index.html

[6] https://docs.microsoft.com/en-us/azure/sql-database/saas-

tenancy-app-design-patterns

[7] Rouven Krebs, Christof Momm, and Samuel Kounev

“Architectural concerns in Multi-tenant SaaS

Applications” conference paper April 2012.

[8] W N T de Alwis, C D Gamage, “A Multi-Tenancy aware

Architectural Framework for SaaS Application

Development” 2013, The Institution of Engineers, Sri

Lanka.

[9] https://blog.techcello.com/2013/04/multi-tenancy-

architecture-models/

[10] Qi Zhang-Lu Cheng, Raouf Boutaba, “Cloud computing:

state of art and research challenges” August 2108.

[11] Husaain aljihadli, Peter Garraghan, Abduliaj Albatli,

Lydia M.S.” Multi-Tenancy in Cloud Comptuing ”, April

2014, http://www.researchgate.net

[12] Steve Bobrowski, “Optimal Multitenant Designs for

Cloud Apps”, 4th InternationalConference on Cloud

Computing, 978-0-7695-4460-1/11, ISBN: 978-0-7695-

4460-1 Digital Object Identifier

10.1109/CLOUD.2011.98 IEEE 2011.

[13] Article by Novalys, Access Control in Multi-Tenant

Applications with VisualGuard, 2011.

[14] Article by Rajkumar R.S.,Access Control in Multi-tenant

Applications , 2012.

[15] Cor-Paul Bezemer, Andy Zaidman, “Multi-Tenant SaaS

Applications: MaintenanceDream or Nightmare?”,

Report TUD-SERG-2010-031, Delft University

ofTechnology Software Engineering Research Group

Technical Report Series 2010.

[16] PeterMell,TimothyGrance,http://csrc.nist.gov/publication

s/nistpubs/800-145/SP800-145.pdf, The NIST definition

of cloud computing, September 2011.

[17] Sanjeev Pippal,Vishnu Sharma, Shakti Mishra,

D.S.Kushwaha, “An EfficientSchema Shared Approach

for Cloud based Multitenant Database with

Authentication and Authorization Framework”,

International Conference onP2P,Parallel,Grid,Cloud and

Internet Computing, Barcelona, 26-28 Oct. 2011.

IJCATM : www.ijcaonline.org

