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ZnO-TiO2 nanocomposites have been successfully synthesized by using simple hydrothermal method
with various ZnO-TiO2 concentrations (such as 2:1, 1:1 and 1:2 ZnO-TiO2, pure ZnO and TiO2). The
XRD, FT-IR, HR-TEM, FE-SEM with EDAX, XPS and UV–Visible spectroscopy were utilized for characteri-
zation of the as-prepared products. XRD revealed that samples are in nanocrystalline nature with forma-
tion of anatase TiO2, hexagonal ZnO, cubic Zn2TiO4 and other zinc titanates. The average crystallite size of
the samples was between 8 and 36 nm. The photocatalytic activity has been demonstrated for the degra-
dation of methylene blue (MB), tetracycline (TC) and mixture of dyes (includes methylene blue, rho-
damine B and methyl orange) under sun light irradiation at room temperature. The degradation rate of
methylene blue has been significantly enhanced with increase in percentage of ZnO. Nanocomposites
with 2:1 concentration of Zn and Ti, has been more efficient than that of other composites. Also, effect
of different parameters such as pH of dye solution, concentration of dye and amount of catalyst etc.
has been evaluated.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Currently whole world suffering from environment issue such
as lack of substantial and clean natural energy, pollution, contam-
ination of the environment. The fast growing industrializations
have increased the generation of highly toxic and carcinogenic
wastewater. The wastewater includes high concentration of vari-
ous organic dyes, surfactants, heavy metals and other harmful
compounds which also hazardous to the quality of soil and intro-
duce ill-effect on aquatic ecosystems as well as human beings
[1]. From them dyes and pigments are substances with high appli-
cation potential in the various industries and extensively used in
textile, food, cosmetic, precious stones, leather, paper, plastics, pro-
cessing, printing, rubber, pharmaceutical, tannery primarily to
color the final products [2]. During the process of colouring, 10–
50% dyes are losses and discharged in to the wastewater that gen-
erate coloured effluents. For example, it is estimated that there are
more than 100,000 synthetic dyes, with an annual manufacture of
more than 700,000 tons world-wide, producing a significant
amount of wastewater [3]. In the textile effluent the concentration
of dyes are differs from 10 mg/L to 250 mg/, the highest concentra-
tion 800 mg/L of reactive dye referred by Yaseen and Scholz [4,5].
Furthermore, tetracycline (TC) is frequently used as antibiotics,
which on discharge to water system develops considerable adverse
effects on human health and ecological systems. Due to the poor
decomposition in animals and human bodies, the majority of TC
is discharged into the wastewater [6]. Furthermore, antibiotic exis-
tence in the environment can affect various species of bacteria, and
increase their resistance [7], thus it needs appropriate approaches
for its removal.

Numerous technologies have been widely investigated to
remove the concentration of dye and tetracycline from wastewa-
ter. In which photocatalytic technology is an emerging and sever-
ally demonstrated with prominent superiority for the
decomposition of organic dyes, pollutants and pharmaceutically
emerging contaminants from different industries, health care sec-
tor as well as agriculture field. Semiconductor composite photocat-
alysts have been extensively exploited in recent years owing to
their promising properties due to individual components and
newly introduced properties due to formation of composite. Sev-
eral composites has been used for addressing the pressing task to
curb the current rapid deterioration of the living environment
[8]. Primarily, in photocatalysis decomposition of organic and inor-
ganic compounds has been initiated through the generation of
electron-hole pairs. Photocatalyst illuminated with light of energy
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higher than its band gap, which results in excitation of electrons
from the valence band (VB) to the conduction band (CB), leaving
holes in the VB. These photo excited electrons and the generated
holes could help to deoxidize or oxidize adsorbates on the catalyst
surface.

Among various semiconductor photocatalysts, titanium oxide
(TiO2), especially with the anatase phase, is one of the most attrac-
tive and exploited catalyst due to its several properties, which
includes chemical stability, inexpensiveness, high crystallinity,
strong oxidation and reduction properties, non-toxicity, and
light-scattering properties [9,10]. However, TiO2 has a wide band
gap energy (3–3.2 eV). It limits the photocatalytic applications of
TiO2 under sunlight irradiation as it needs ultraviolet light for acti-
vation and generally sunlight having less than 5% UV light [11].
From last few decades, improving TiO2 photocatalytic efficiency
has become a hot topic. One of commonly used approach is doping
of transition metals/non-metals into TiO2, forming doped photo-
catalyst, which would modify both physical and optical properties
of TiO2 [10,12,13]. Another approach is to couple the TiO2 with
other oxides in order to achieve higher photocatalytic efficiency.
These metal oxides includes WO3 [14], ZrO2 [15], ZnO [16–18],
SiO2 [19,20], Fe2O3 [21], SnO2 [22] and MoO3 [23]. Like TiO2, zinc
oxide (ZnO) is another promising n-type semiconductor photo-
catyst, which has received a great attention. ZnO having wide band
gap of 3.37 eV and used efficiently for organic pollutants pho-
todegradation[24–31]. Further, it is attracting researcher due to
its nontoxicity, high catalytic efficiency and low cost [32–35].
But, due to large band gap energy ZnO photocatalyst is also appli-
cable under UV irradiation [36]. Also, ZnO suffers from intrinsic
drawback of photocorrosion, which resembles its photoactivity
and photostability [37]. Further, several research activities have
been applied to enhance the photocatalytic properties by introduc-
ing nanostructures or morphologies of TiO2 as well as ZnO [38–40],
including polymer backing [41], surface doping with nonmetallic/
metallic elements or semiconductor oxides [10,12,13,42–45], and
surface deposition/composites of metal nanoparticles [46–48].
TiO2 catalyst can be coupled with ZnO in the form of composite
to enhance photocatalytic efficiency by reducing the charge carrier
recombination rate and improving its visible-light photocatalytic
activity [49–51].

Furthermore, coupling of nanosized TiO2 and ZnO has been
well-established and remarkably improve the separation efficiency
of photo excited charge carriers due to the formation of hetero-
junction structure between these two, thus improving quantum
efficiency as well as photostability of the catalyst [52,53]. Though
the binding energies of ZnO and TiO2 are comparable to each other,
the potentials of the CB and the VB of ZnO are bit more negative
than those of TiO2 [54,55]. Accordingly, lower band gap energy
may be achieved when TiO2 and ZnO were combined in an appro-
priate way [56,57].

ZnO-TiO2 nanostructured composites were very active materi-
als due to its unique properties. These nanocomposites were mul-
tifunctional semiconductor materials with a direct wide-band gap
and large excitation binding energy. Nanostructured semiconduc-
tor ZnO-TiO2 nanocomposite were synthesized using various tech-
niques like sol–gel, hydrothermal, solution combustion, co-
precipitation, ultrasonic precipitation, ball milling technique, and
thermal decomposition [58–62].

In this present study, we have developed a facile and repro-
ducible strategy for preparing ZnO-TiO2 and ZnO/Zn2TiO4

nanocomposites by hydrothermal method. The prepared nanocom-
posites were characterized by X-ray diffraction spectroscopy
(XRD), Fourier transform infrared spectroscopy (FTIR), Scanning
electron microscopy (SEM), Energy-dispersive X-ray spectroscopy
(EDX), high resolution transmission electron microscopy (HRTEM),
and UV–Vis diffuse reflectance spectroscopy (UV-DRS), etc. The
2

photocatalytic activity of the as-prepared photocatalyst was mea-
sured by the degradation of methylene blue (MB), mixture of dyes
and tetracycline antibiotic. The nanocomposites displayed signifi-
cantly enhanced photocatalytic activity than pure TiO2 under
direct sun light irradiation.
2. Experimental procedure

2.1. Synthesis of Catalysts:

2.1.1. Preparation of mixture A:
5.60 g of zinc acetate dihydrate was dissolved in 50 ml water

under vigorous stirring at 60 �C. 10 ml 0.5 M sodium hydroxide
solution was added dropwise into zinc acetate aqueous solution
until a transparent solution was obtained (at pH = 9). Resultant
solution was stirred at 60 �C for 30 min.

2.1.2. Preparation of mixture B:
The 7.593 ml of acetic acid was added in to 75 ml of ethanol

under continuous stirring for 30 min. Then 7.593 ml of titanium
tetra-isopropoxide was also added to acetic acid solution and stir-
red for 30 min. at room temperature.

The prepared mixture B solution was dropwise added to mix-
ture A under constant stirring at 60 �C for 30 min. This mixture
was then transferred into a stainless steel autoclave and main-
tained at 150 �C for 18 h. After cooling to room temperature, the
formed white precipitate was filtered, washed with distilled water
and ethanol and dried in the oven at 80 �C. Finally, obtained pow-
der was calcined at 450 �C for 6 h.

By this developed procedure, we prepared nano-composites by
taking 1:1, 1:2 and 2:1 M ratio of Ti and Zn and designated as ZnTi-
1:1, ZnTi-2:1 and ZnTi-1:2 respectively.

2.2. Characterization

The phase compositions and crystallinity of the products were
investigated by powder X-ray diffraction (XRD) measurement on
a X-Ray diffraction system Ultima of Rigaku Corporation. Line
traces were collected over 2h values ranging from 20� to 80�. The
vibrational modes were determined by FTIR spectra of the
nanocomposites by using FT-IR spectrometer thermo electron sci-
entific (Nicolet iS10 Mid) in the range of 400–4000 cm�1. Mor-
phologies of the products were examined by a field-emission
scanning electron microscope (FEI Nova nano SEM 450) and a
high-resolution transmission electron microscope 300 kV
equipped (Rigaku Corporation). The chemical composition of the
products was also investigated using energy dispersive X-ray anal-
ysis (EDS) (Bruker X-flash 6130). The UV–Vis spectra of the cata-
lysts and photocatalytic degradation studies of the dyes and mi
under study were performed on a Elico UV–visible spectropho-
tometer (UV–Vis; Elico, model v670). XPS measurement of the pre-
pared sample have been recorded on a Shimadzu (ESCA 3400)
spectrometer having Mg Ka (1253.6 eV) radiation as the excitation
source.

2.3. Photocatalytic degradation

The photocatalytic activity of the ZnTi-1:1, ZnTi-2:1, ZnTi-1:2
nano-composites and bare TiO2 has been tested for the degradation
of MB and mixed dyes (20.0 mg/L) in aqueous solution under sun-
light irradiations. Also various parameters of reaction mixture such
as concentration of dye, amount of catalyst, pH of dye solution, etc.
were optimized during photo degradation reaction. The pH of the
MB dye solution was varied by adding required amount of 1 N
NaOH or 1 N HCl solution.



Fig. 1. XRD spectra of bare TiO2, ZT-2:1,ZT-1:1, ZT-1:2 and bare ZnO powders.
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2.3.1. Photocatalytic degradation of MB
The 200 ml (20 mg/L)MB solution was taken in 500 ml beaker

containing 100 mg catalyst. Initially, this solution was stirred in
dark for 30 min to achieve the adsorption desorption equilibrium
and then kept in sun light. Sample was collected after given time
intervals, also the colour of dye solution decreased with time.
Absorbance of obtained samples were measured at wavelength
200–800 nm. For testing the self-photodegradation of dye solution,
200 ml dye solution was kept in sun light for about 7 h. Observa-
tion indicates that reaction does not proceed without catalyst.

2.3.2. Photocatalytic degradation of mixed dyes
Photodegradation reaction was carried out with mixed dyes (a

solution of methyl orange, methylene blue, rhodamine B). Mixture
of dye solution has been prepared by taking equal volume of each
dye solution and 20 ppm stock solution of individual dye have
been used. 200 ml (20 mg/L) of mixed dye solution was taken in
round bottom flask. Initially, for testing self-degradation of these
dyes, the assembly was kept in sunlight without catalyst, no
change in colour and absorbance was observed after 7 h. Then,
100 mg catalyst was added into the reaction and assembly was
kept in dark at room temperature for 30 min and then whole
assembly was kept in sunlight. The samples were collected at def-
inite time intervals and centrifuged and monitored by using UV–
visible spectrophotometer at wavelength 200–800 nm.

2.3.3. Photocatalytic degradation of tetracycline
Furthermore, photocatalytic activity of the prepared nanocom-

posite ZnTi-1:2 was also tested for the degradation of tetracycline
antibiotic under sunlight irradiation. The 20 ppm solution of tetra-
cycline was prepared and control experiments were carried out
with using 200 ml solution with stirring without using catalyst
in sunlight for a day. By maintaining same condition, the reaction
did not proceed and the concentration of tetracycline solution
remained intact. Then the reaction solution was prepared by using
100 mg ZnTi-1:2 nanocomposite and 200 ml solution of 20 ppm
tetracycline antibiotic. Firstly, assembly was kept in dark with stir-
ring at room temperature for 30 min to reach the adsorption–des-
orption equilibrium, then the reaction assembly was kept in
sunlight. Samples were taken at definite time intervals and cen-
trifuged and monitored by UV–Visible spectrometer for wave-
length range 200 to 800 nm.
3. Results and discussion

3.1. Characterization

3.1.1. X-ray diffraction study:
The X-ray diffraction patterns of ZnO, TiO2 and ZnTi-1:1, ZnTi-

2:1, ZnTi-2:1 are shown in Fig. 1. Bare ZnO has shown the charac-
teristic peaks at 31.81�, 34.5�, 36.32�, 47.65�, 56.69�, 62.93�, 68.00�
and 69.23�, which are correspond to (100), (002), (101), (102),
(110), (103), (112) and (201) crystal planes respectively, associ-
ated with wurtzite type of ZnO, which indicate that ZnO possesses
a hexagonal crystal structure. Whereas, for pure TiO2 diffraction
peaks are located at 2h = 25.25�, 36.89�, 37.79�, 47.99�, 53.94�,
55.09�, 62.70�, 68.77�, 70.26� and 75.14� which are corresponding
to the following crystal planes (101), (103), (004), (200), (105),
(211), (204), (216), (220) and (224), respectively and confirm
the presence of anatase TiO2. XRD analysis of ZnTi-1:2 indicate
the presence of hexagonal ZnO and anatase TiO2, confirming the
formation of ZnO/TiO2 composite. The results are compared with
JCPDS (21–1272) and JCPDS (36–1451) for TiO2 and ZnO respec-
tively [63]. Also, XRD spectra of ZnTi-1:1 and ZnTi-2:1 has shown
the presence of hexagonal ZnO. Interestingly, these two samples
3

additionally shown reflection peaks at 30.05� (220) and 42.48�
(400) attributing to formation Zn2TiO4 phase, having a cubic phase
(JCPDS 01–077-0014). Also, sample ZnTi-1:1 has shown additional
peaks, which shows the presence of different zinc titanates such as
ZnTiO3, Zn2Ti3O8. All these phases have been confirmed from liter-
ature [64–67]. From XRD, sample ZnTi-1:2 is ZnO/TiO2 nanocom-
posite, while ZnTi-2:1 is Zn2TiO4/ZnO nanocomposite.

The crystallite size of the samples was calculated by using the
Scherrer formula by considering highest intensity peak in each
spectra:

D = kk/bcosh ð1Þ
Where D is crystallite particle size, k is a constant of 0.94, k is

the wavelength (nm) of X-rays, b is the full width at half-
maximum of (101) peak, and h is the Bragg angle [68]. The average
crystallite size of the ZnTi-2:1, ZnTi-1:1, ZnTi-1:2, pure TiO2 and
pure ZnO was 8.32, 10.77, 11.47, 20.28 and 35.85 nm respectively.

3.1.2. UV–Visible Study:
Fig. 2 illustrates the UV–Visible spectra of bare TiO2 and differ-

ent prepared nanocomposites with different concentrations of Ti
and Zn. From the figure, it has been clear that the prepared hetero-
junction nanocomposites has higher absorption than bare TiO2. All
the absorbance spectra has shown a sharp band at near to the 400
nm as absorption edge and slight red shift has been seen for com-
posites as compare to bare TiO2. As a result, these nanocomposites
has shown slight variation of band gap energy as compared to that
of bare TiO2 (Fig. 2 (b)). The band gap of the prepared composites
has been deduced by using the Tauc plot. The band gap energy
has been obtained by plotting (ahm)2 vs. hm (where a is the absorp-
tion coefficient and hm is photon energy) and by extrapolation of
the linear portion at (ahm)2 = 0 as shown in Fig. 2 b). The estimated
band gap energy from the intercept of the tangents to the plots are
3.39, 3.29, 3.20 and 3.16 eV for the samples bare TiO2, ZT-1:2, ZT-
1:1 and ZT-2:1 respectively. As a result, the minimum energy is
required to excite an electron from VB to CB is noticeably lower
in the ZT-2:1 than that of the other composites and bare TiO2. This
concludes that the ZT-2:1 has a larger redox potential for the pho-
tocatalytic degradation of organic contaminants under sun light
irradiation. Pictorial representation of conduction band and
valence band for ZnO/TiO2 and Zn2TiO4/ZnO nanocomposites has
been shown in Fig. 3. As per XRD study these two schematics are
represented by catalysts ZnTi-1:2 and ZnTi-2:1 respectively.



Fig. 2. Band gap energy measurement: a) UV–Visible absorption spectra and b) plot
of ht vs (aht)2 of as-prepared catalysts.

Fig. 3. Representation of VB and CB in ZnO/TiO2 and ZnO/Zn2TiO4 nanocomposites
(E0, Ec and Ev represents energy levels of CB top, CB low and VB top respectively).

Fig. 4. FT-IR spectra of the ZnO-TiO2 (2:1, 1:1 and 1:2) nanocomposites.
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3.1.3. FT-IR studies:
Fig. 4 shows the FT-IR spectrum of the ZT-1:2, ZT-1:1 and ZT-

2:1 nanocomposites. The FT-IR patterns for all the samples are
approximately parallel. The characteristic vibrations at ~ 500
and ~ 520 cm�1 attributing to M�O stretching ie. Zn–O and Ti–O
of nanocomposites, which are consistent with the results from pre-
vious reports [69]. Further, the FT-IR spectra of nano-composites,
ZT-2:1, ZT-1:1 and ZT-1:2, exhibited weak bands at about 1377,
1447 and 1512 cm�1 due to the presence of small amount of the
organic residue during preparation methodology. Additionally,
bands at about 1630 to 1730 cm�1 and broadband centered
at ~ 3380 cm�1 corresponding to bending and stretching frequen-
cies of the OH– groups on the surface of the prepared catalysts.
3.1.3.1. Field Emission Scanning Electron Microscopy (FESEM) and
EDAX measurements:. Scanning electron microscopy has been used
to study the morphology, shape and size of the prepared materials.
Fig. 5 shows the FESEM images and EDAX spectra of the prepared
photocatalysts ZT-1:2, ZT-1:1 and ZT-2:1. Fig. 5 (a and b) repre-
sents the images of photocatalysts ZT-1:1 and ZT-2:1, which shows
the formation of nano-rod along with the highly agglomerated
nanoparticles. Furthermore, Fig. 5 (c) representing the photocata-
lyst ZT-1:2, having spherical nanoparticles, which are also highly
4

agglomerated. As the composition of catalyst is very sensitive for
the application; the elements present in the nanomaterials were
analyzed by energy dispersive X-ray spectroscopy (EDS). The EDS
spectra of the as-prepared materials were recorded in the binding
region of 0–12 keV. EDS analysis confirms the presence of Ti, Zn
and O elements in formed composites. Elemental percentage
obtained from the EDAX are shown in the table 1, which are com-
parable to preparation conditions.
3.1.4. High-resolution transmission electron microscopy (HRTEM):
HRTEM images at different resolution for ZT-2:1 has been

shown in Fig. 6. HRTEM images has shown the nano-crystalline
particles aggolamerization. Particle size distribution plot from
Fig. 6 b) is shown in Fig. 6 c) and indicate that the average particle
size in from 8 to 11 nmwhich is also in accordance with the results
obtained from XRD.



Fig. 5. FESEM images and EDAX spectrum of the a) ZT-2:1, b) ZT-1:1 and c) ZT-1:2 nanocomposites.

Table 1
Elemental composition analysis of ZnTi-2:1, ZnTi-1:1, ZnTi-1:2 nanocomposites.

Nanocomposite Elemental composition (atomic %)

Zn-element Ti-element O-element

ZnTi-2:1 9.88 5.14 84.98
ZnTi-1:1 5.70 8.12 86.18
ZnTi-1:2 5.66 18.63 75.71
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3.1.5. X-ray photoelectron spectroscopy:
Fig. 7 shows the XPS analysis of ZT-2:1 sample, which confirms

the elemental composition of as-prepared catalyst. Fig. 7 a) shows
Fig. 6. HRTEM images of ZT-2:1 nanocomposite

5

the survey spectra, which indicates the presence of Ti, Zn and O in
the sample. In Fig. 7 b), the peaks at 458.4 eV and 464.2 eV repre-
sents Ti4+, which are corresponds to Ti 2p3/2 and Ti 2p1/2 respec-
tively. As shown in Fig. 7 c), the first peak at 530.1 eV is
corresponding to lattice oxygen associated with Ti4+ and Zn2+.
The second peak at 531.6 eV is attributed to oxygen from the sur-
face hydroxyl group in the catalyst and last peak at 535.7 eV
assigned to the moisture absorbed in the samples. In Fig. 7 d),
the binding energy peaks at about 1021.5 eV and 1044.7 eV are
corresponds to the valance state of Zn2+, which are attributed to
Zn 2p3/2 and Zn 2p1/2 respectively. Similar results have been found
in the literature [70].
and corresponding particle size distribution.



Fig. 7. a) XPS spectra of ZT-2:1 nanocomposite, high-resolution spectra of b) Ti 2p, c) O 1 s, d) Zn 2p.

Fig. 8. UV–Visible spectra of MB using ZT-2:1 catalyst at different time interval.
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3.2. Photocatalytic degradation of MB dye:

Photocatalytic degradation of MB dye has been studied by using
photocatalysts ZT-1:2, ZT-1:1, ZT-2:1 and bare TiO2. MB is one of
the important dye used in textile industries and contributing for
water pollution. We have used MB as a representative of industrial
dye for photocatalytic study. Initially, in blank experiment, we
have carry out the experiment in sunlight without any photocata-
lyst and no degradation of MB has been observed. Further, we have
studied the degradation of 20 ppm MB solution using prepared
photocatlysts. Fig. 8 shows the degradation trend of MB dye using
ZnTi-2:1 photocatalyst, examined by using UV–visble spectroscopy
and complete degradation has been observed in 150 min. Fig. 9 a),
shows the degradation results obtained by using various catalysts.
ZnTi-2:1 catalyst has shown the higher degradation efficiency as
compare to other catalysts. The higher efficiency of ZnTi-2:1 is
may be due to less particle size and lower band gap of the catalyst.
Further, Fig. 9 b) shows that the degradation of MB dye using these
catalysts is pseudo first order reaction and appearent rate constant
has been calculated by equation:

� log
C0

C
¼ Kapp:

t
2:303

� � � ð2Þ

Where, Kapp is the apparent rate constant of a reaction, C0 is the
initial concentration of MB dye solution and C is the concentration
of MB dye solution at reaction time t.

Obtained rate constants of the degradation experiments has
been shown in table 2. From the kinetic study, rate constant for
degradation by using ZnTi-2:1 is 28.92 � 10-3 min�1, which is
almost double than that of ZnTi-1:2 catalyst (14.28 � 10-3 min�1)
6

and also higher than all the prepared catalysts. By using ZnTi-2:1
catalyst, we have studied the effect of various reaction parameters
such as concentration of dye, pH of dye solution, and catalyst
loading.

Degradation study has been performed by using 20, 30 and
40 ppm solution of MB dye and the obtained results are shown
in Fig. 10. On increasing the concentration of dye, more number
of dye molecules are available for degradation, which will show



Fig. 9. a) Plot of C/C0 vs time (min.) for all catalysts and b) corresponding plot of lnC0/C vs time (min.).

Table 2
Reaction kinetic parameters for degradation of MB dye using as-prepared catalysts.

Catalyst Initial dye
concentration (%)

Remaining dye concentration
after 150 min. (%)

Rate constant
(min�1)

TiO2 100.0 43.74 5.27 � 10-3

ZT-1:1 100.0 11.51 14.28 � 10-3

ZT-1:2 100.0 23.63 9.74 � 10-3

ZT-2:1 100.0 4.31 28.92 � 10-3

Fig. 10. Degradation of MB dye using different concentration and ZT-2:1 as
catalyst: a) plot of C/C vs time b) plot of d[MB]/dt vs time.
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positive effect on degradation efficiency, whereas due to colour
intensity, it may restrict the incoming light to reach the catalyst,
which results in decrease in degradation efficiency. Both these fac-
tors works during the study of degradation of dye at different con-
centration. From Fig. 10 a) degradation of 20 ppm solution
comparatively takes place faster as compare to 30 ppm and
40 ppm solution, but from Fig. 10 b) it has been clear that rate of
degradation ie. d[MB]/dt is increasing with increase in concentra-
tion. Furthermore, as time goes on for each experiment rate of
degradation decreases.

To study the role of pH on degradation efficiency, we have
adjusted the pH of the solution by adding 0.1 N HCl and 0.1 NaOH.
Experiments has been carried out at pH 1, 5, 9 and 11. From the
Fig. 11, it has been clear that in basic pH degradation efficiency
is more as compare to acidic pH. Also, this observation support
that, �OH formed due to addition of NaOH, may play an important
role in degradation mechanism. Further, basic and acidic condition
can deprotonate and protonate the surface of catalyst respectively.
As a result, the surface become negatively and positively charged
in alkaline and acidic medium respectively. The generated charge
on the surface can change the adsorption of organic pollutant on
the catalyst surface, which can change the rate of reaction. As
degradation is faster in basic pH, the reactive species OH�, gener-
ated on the surface of the catalyst is responsible for the degrada-
tion of the organic pollutants under sunlight. The formation OH�,
HO2

� and O2
�� radicals takes place on the surface of the catalyst

under different conditions as shown in equations (3–6). The degra-
dation of organic pollutant takes place photo catalytically as shown
in equations due to formation of OH� as shown in equations (7–9).

e�CB + O2(aq) ! O2
�� ð3Þ

e�CB + O2(aq) + Hþ !HO2
� ð4Þ

hþ
VB + OH� !OH� ð5Þ
0

7



Fig. 11. Degradation of MB dye at different pH of solution and ZT-2:1 as catalyst. Fig. 13. Degradation of mixture of dyes using ZT-2:1 catalyst.
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hþ
VB + H2O ! Hþ + OH� ð6Þ

Dye + HO�!CO2 + H2O (non-toxic product) ð7Þ

Dye + ZT[hþ
VB] ! oxidation products ð8Þ

Dye + ZT[e�CB] ! reduction products ð9Þ
Also, effect of loading of the catalyst has been studied by using

different amount of catalyst for degradation reaction. On increas-
ing the catalyst loading, more number of catalytic sites are avail-
able for the reaction and accelerate the degradation reaction.
Fig. 12, shows progress of the reactions studied by using 0.25
gm/L, 0.50 gm/L and 1gm/L catalyst loading.

3.3. Photocatalytic degradation of mixture of dyes:

As we know that, industrial effluent from textile industries may
have mixture of dyes. Here we have studied the photocatalytic
degradation of mixture of three dyes namely, methyl orange,
methylene blue and rhodamine B by using ZnTi-2:1 catalyst. The
progress of the reaction has been monitored by UV–Visible analysis
Fig. 12. Degradation of MB dye using different amount of ZT-2:1 as catalyst.
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(Fig. 13). The degradation of the three dyes has been efficiently car-
ried out by using this catalyst.

3.4. Photocatalytic degradation of tetracycline antibiotic:

Fig. 14 shows UV–visible absorption spectra of tetracycline
antibiotic in the suspension of ZnTi-2:1 (100 mg) at different irra-
diation time. From figure, the maximum absorption peaks (kmax) of
tetracycline antibiotic are shown at ~270 nm and ~368 nm at zero
time; which have been gradually decreased during the time illumi-
nation. It reaches the highest removal efficiency within only
60 min agitation with initial 20 ppm tetracycline antibiotic con-
centration. Furthur, during the photodegradation reaction the red
shift has been observed for UV–Visible characteristic absorption
peak from ~ 368 nm to ~ 374 nm during absorption–desorption
and after irradiation the peak have been completely disappears.

3.5. Recyclability of the catalyst:

Recyclability is the one of the important advantage of heteroge-
neous catalyst over the homogeneous and liquid catalysts. We
have performed the recyclability study by using most active
Fig. 14. Degradation of tetracycline using ZT-2:1 catalyst.



Fig. 15. Recyclability of ZT-2:1 for degradation of MB.
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ZnTi-2:1 catalyst for degradation of methylene blue dye and the
results obtained are shown in Fig. 15. During each cycle, we have
separated the catalyst by centrifugation, washed with ethanol
and water and dried. This recycled catalyst has been directly used
for next recycle. The catalyst has been successfully reused for three
cycles and in all three cycles, it has shown almost similar activity.
4. Conclusion

In this study, have successfully prepared ZnO/TiO2 and TiZn2O4/
ZnO nano-composites by using hydrothermal methods. XRD, SEM
and TEM shown that the prepared catalysts are nanocrystalline
in nature. Further, SEM shows the rod and spherical particles in
the catalysts. These as-prepared nanocomposites has shown good
efficacy for photocatalytic degradation of methylene blue dye, mix-
ture of dyes and emerging contaminant tetracycline. ZnTi-2:1 cat-
alyst has been recycled for three times without loss in activity.
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