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A B S T R A C T

In the present work, an extensive QSAR (Quantitative Structure Activity Relationships) analysis of a series of
peptide-type SARS-CoV main protease (MPro) inhibitors following the OECD guidelines has been accomplished.
The analysis was aimed to identify salient and concealed structural features that govern the MPro inhibitory
activity of peptide-type compounds. The QSAR analysis is based on a dataset of sixty-two peptide-type compounds
which resulted in the generation of statistically robust and highly predictive multiple models. All the developed
models were validated extensively and satisfy the threshold values for many statistical parameters (for e.g. R2 ¼
0.80–0.82, Q2

loo ¼ 0.74–0.77, Q2
LMO ¼ 0.66–0.67). The developed QSAR models identified number of sp2 hy-

bridized Oxygen atoms within seven bonds from aromatic Carbon atoms, the presence of Carbon and Nitrogen
atoms at a topological distance of 3 and other interrelations of atom pairs as important pharmacophoric features.
Hence, the present QSAR models have a good balance of Qualitative (Descriptive QSARs) and Quantitative
(Predictive QSARs) approaches, therefore useful for future modifications of peptide-type compounds for anti-
SARS-CoV activity.
1. Introduction

Coronaviruses (subfamily Coronavirinae, family Coronaviridae, order
Nidovirales) have been classified into four genera: Alphacoronavirus,
Betacoronavirus, Gammacoronavirus and Deltacoronavirus [1]. Of these,
especially Betacoronavirus, have been found to cause respiratory, enteric,
hepatic, and neurological diseases in many animals, and also in humans
[2]. The two Betacoronaviruses (βCoVs) viz. severe acute respiratory
syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV
(MERS-CoV) spread in 2003 and 2012, respectively [2,3]. SARS-CoV and
MERS-CoV have fatality rate of 10% and 35%, respectively [2,3]. Un-
fortunately, till this date, there is no appropriate treatment for SARS-CoV
and MERS-CoV [2,3]. The situation has worsened with the recent
outbreak of more contagious novel coronavirus SARS-CoV-2, which is the
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causative agent for COVID-19 pandemic. This disease has a long-term
socio-economic impact on many countries due to high infection and
mortality rate. At present, this disease is responsible for more than 732,
499 deaths and 20 million confirmed infected cases [4]. Therefore, there
is an urgent need to curb this deadly disease.

The recent outbreak of COVID-19 pandemic, with no approved
treatment for infections, has spread quickly in many countries. Even
though, COVID-19 is a new disease caused by the novel coronavirus
SARS-CoV-2, but a good number of studies suggest that it has significant
similarity with SARS-CoV [3,5–7]. This similarity is reflected from the
facts that SARS-CoV and SAR-CoV-2 have a 79% similarity at the genome
level, in addition, a lot of proteins like glycosylated spike (S) protein
(76% of sequence similarity and a highly conserved receptor-binding
domain), papain-like protease (PLpro) (83% similarity with similar
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Fig. 1. Variations in activity and chemical structure in the present dataset.

Fig. 2. Correlation of statistical parameters with number of molecular descriptors.
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active sites), RNA-dependent RNA polymerase (RdRp), and coronavirus
main protease (3CLpro) are essential for both. To add further, RdRp and
3CLpro protease of SARS-CoV-2 share over 95% of sequence similarity
with those of SARS-CoV [3,5–7]. In short, viral proteins essential for
SARS-CoV-2 entry into host cells and subsequent replication are highly
similar to those associated with SARS-CoV. Consequently, research and
development on SARS-CoV could be useful for the development of a
therapeutic or preventive agent for COVID-19. To add further, designing
and synthesis of a new drug and its congeners followed by their
bio-screening need a lot of time. Therefore, high similarity of
SARS-CoV-2 with SARS-CoV and considering the potential threat of this
pandemic, it is reasonable that a therapeutic drug, which has been pre-
viously tested against SARS-CoV could be easily optimized to be effective
2

against SARS-CoV-2.
To optimize a compound to become a lead or a drug, a researcher

needs to follow an easy, efficient, economical, and eco-friendly approach
(e-Chemistry approach). A feasible solution to achieve these goals is to
use Computer-Aided Drug Designing (CADD). CADD is a contemporary
approach with a good number of benefits like cheaper, result oriented,
minimizes animal testing as well as trials and errors, less time-
consuming, a few advantages to mention. In recent time, the thriving
branches of CADD such as QSAR (Quantitative Structure Activity Re-
lationships), Molecular docking, Pharmacophore modelling, etc. have
contributed significantly in optimization of lead and drug candidates [8,
9].

QSAR analysis involves findingmathematical correlation between the



Table 2
Statistical parameters for developed QSAR models 1.1 and 1.2

Statistical Parameter Model-1.1 Model-1.2

Fitting
R2

tr 0.801 0.824
R2

adj. 0.78 0.8
R2

tr - R2
adj. 0.022 0.025

LOF 0.326 0.324
Kxx 0.241 0.271
ΔK 0.06 0.05
RMSEtr 0.461 0.433
MAEtr 0.375 0.328
RSStr 13.15 9.366
CCCtr 0.89 0.904
s 0.489 0.467
F 36.953 33.606
Internal validation
R2

cv (Q2loo) 0.741 0.769
R2-R2

cv 0.06 0.055
RMSEcv 0.526 0.496
MAEcv 0.427 0.378
PRESScv 17.14 12.312
CCCcv 0.857 0.874
Q2

LMO 0.673 0.665
R2

Yscr 0.097 0.124
Q2

Yscr �0.182 �0.22
External validation
RMSEex – 0.527
MAEex – 0.461
PRESSext – 3.332
R2

ex – 0.758
Q2-F1 – 0.741
Q2-F2 – 0.74
Q2-F3 – 0.739
CCCex – 0.841
R2-ExPy 0.743 0.758
R’o2 0.684 0.623
k’ 0.996 0.975
1-(R2/R’o2) 0.08 0.178
r’2m 0.562 0.48
Ro
2 0.741 0.753

k 0.997 1.019
1-(R2-ExPy/Ro

2) 0.002 0.006
r2m 0.713 0.709
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structural features of congeneric molecules with bio-activity. The main
steps followed during a typical QSAR analysis are (1) Selection of an
appropriate dataset (2) 3D-structure generation and their optimization
using suitable technique (3) Molecular descriptor calculation followed by
their pruning (4) Generation of QSAR model using a proper algorithm for
feature (that is, molecular descriptor) selection and (5) Adequate vali-
dation of developed QSAR model [10].

QSAR is an established CADD branch, which has been used success-
fully to identify noticeable and hidden structural patterns/features hav-
ing correlation with a desired activity/property (Qualitative QSAR). In
addition, it is helpful to predict the activity/property before the actual
synthesis and testing of a molecule (Quantitative QSAR). Therefore,
QSAR analysis is performed routinely by the researchers to get important
qualitative and quantitative idea about the congeneric molecules for
optimization. An adequately validated and statistically robust QSAR
analysis offers in-depth knowledge about the structural patterns that
have good correlation with the desired activity/toxicity/property of a
drug candidate and enhanced intuition for the mechanism of drug action
[11–18].

A good number of researchers have synthesized peptide-type com-
pounds and tested against SAR-CoV [19–22]. Recently, Zhang et al. [23]
synthesized and tested α-Ketoamides (peptide-type compounds) as
broad-spectrum inhibitors of coronavirus (SARS-CoV). Despite these ef-
forts, optimization of peptide-type compounds is in pipeline to get a drug
candidate. Henceforth, in the present work, we have developed
3

Qualitative cum Quantitative SAR models for a series of sixty-two pep-
tide-type compounds for anti- SARS-CoV activity. The results could be
beneficial for future optimizations of peptide-type compounds with
better activity profile.
1.1. Experimental methodology

Selection of dataset: The dataset selected for the present work
comprises sixty-two peptide-type compounds having moderate to high
activity against SARS-CoV [19,21,22]. The selected peptide-type com-
pounds possess Ki¼ 3 to 56,000 nM. The reported activity Ki values were
converted to pKi (pKi¼ –logKi) before actual QSAR analysis. For the sake
of ease and understanding the chemical space covered by the present
dataset, most and least active three molecules have been depicted in
Fig. 1. The SMILES notation for all selected molecules along with their
reported activity values Ki, and pKi are present in Table S1 in supple-
mentary material.
1.2. Structure optimization and molecular descriptor calculation

The structures were drawn using ChemSketch 12 Freeware (www.ac
dlabs.com) followed by their conversion to 3D-structures using Open-
Babel 2.4. Then, the force field MMFF94 was used to optimize the
structures. The 3D-structures were optimized using default settings
available in TINKER. The molecules in each set were then aligned using
Open3DAlign. In the next step, the optimized and alignedmolecules were
then used for calculation of molecular descriptors using PyDescriptor [24]
and PaDEL [25].
1.3. Molecular descriptor pruning

PyDescriptor and PaDEL provided more than 30,000 molecular de-
scriptors for each molecule in all sets. Therefore, molecular descriptor
pruning was essential to remove redundant molecular descriptors. For
this, molecular descriptors with high co-linearity (|R|>0.90) and nearly
constant (>95%) were removed to avoid the inclusion of multi-collinear
and spurious variables in GA-MLR (Genetic Algorithm–Multi-linear
Regression) model, using objective feature selection in QSARINS ver.
2.2.2 [26–29]. The resulting reduced molecular descriptor pool
comprised of only 668 molecular descriptors only but large enough to
cover 1D-to 3D-descriptor space.

QSAR model building and their validation:
The reduced molecular descriptor set comprises zero-, one-, two- and

three-dimensional descriptors, charge descriptors and molecular prop-
erties, thereby covering broad descriptor space. Subjective feature se-
lection (SFS) was executed to build the statistically acceptable GA-MLR
based QSAR models using QSARINS ver. 2.2.2. The developed models
were subjected to thorough statistical validation (internal and external
validation) according to OECD principles; models with high internal and
external predictive ability have been reported.

The general procedure for building the QSAR models is as follows:

(1) The set was bifurcated randomly, using random splitting option in
QSARINS, into a training and a prediction set of 52 (i.e. 80 %
training set) and 12 (i.e. 20 % prediction set), respectively. Then,
the training set was used for model development, and the pre-
diction set for the external validation, that is, to judge the pre-
dictive ability on new chemicals.

(2) QSARINS was used to build GA-MLR based QSAR models using
default settings. The selected fitness function to maximize in GA
was Q2, this ensured the double cross-validation as well [26,27,
30]. During model development it was observed that there was
growth in the value of Q2 up to six variables, but then, it had
visible and significant reduction (see Fig. 2). Therefore, molecular
descriptor selection was restricted to a set of six descriptors to

http://www.acdlabs.com
http://www.acdlabs.com


Fig. 3. (a) Graph of experimental vs Predicted pKi values for model 1.1 (b) Williams plot for model 1.1 (c) Graph of experimental vs Predicted pKi values for model 1.2
(d) Williams plot for model 1.2.
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avoid over-fitting and develop easy and informative QSAR
models.

The values for molecular descriptors, which are present in QSAR
models, are available in the supplementary information for each
molecule.

(3) One of the OECD guideline suggests to thoroughly validating a
QSAR model, therefore all the models were subjected to internal
and external validation, Y-scrambling along with model applica-
bility domain (AD) analysis using QSARINS. The statistical quality
and strength of a GA-MLR based QSAR model was judged on the
basis of: (a) internal validation based on leave-one-out (LOO) and
leave-many-out (LMO) procedure (i.e. cross-validation (CV)); (b)
4

using External validation; (c) Y-randomization (or Y-scrambling)
and (d) fulfilling of respective threshold value for the statistical
parameters [31,32]: R2

tr � 0.6, Q2
loo � 0.5, Q2

LMO � 0.6, R2 > Q2,
R2

ex � 0.6, RMSEtr < RMSEcv, ΔK � 0.05, CCC � 0.80, Q2-Fn �
0.60, r2m � 0.6, (1-r2/ro2) < 0.1, 0.9 � k � 1.1 or (1-r2/r’o2) < 0.1,
0.9� k’� 1.1,| ro2� r’o2|< 0.3 with RMSE andMAE close to zero. A
QSAR model that did not satisfy above mentioned criteria was
consequently excluded.

Thus, the complete procedure involving molecular descriptor calcu-
lation and their pruning, followed by subjective feature selection along
with model building and validation was performed on all the four sets. It
was observed that the MMFF94 optimized set resulted in development of
statistically better QSARmodels, which have been reported in the present



Fig. 4. Representation of sp2O_aroC_7 B using molecule number 47 and 2 as representatives only.
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work.

2. Result and discussions

Though, the dataset used in the present study contains only sixty-two
compounds but the presence of positional isomers, heterocyclic rings,
etc. significantly augment the chemical space covered by the peptide-
type compounds. In our previous work on QSAR analysis related to
small and moderate sized datasets [29], we have demonstrated that a
QSAR model built using undivided whole dataset provides advantages
like identification of maximum useful information, capturing of
maximum relevant molecular descriptors, and benchmark for compari-
son and assessment of QSAR models constructed using divided datasets.
In addition, this approach also helps to capture unrevealed structural
features, which govern the bio-activity profile of congeneric molecules.
Therefore, in the present work, models have been derived using divided
and undivided datasets.

The derived QSAR models are as follow:
Model-1.1 (Undivided Set model):
pKi ¼ 1.781 (�1.357) þ 1.073 (�0.317) * sp2O_aroC_7B þ 0.377

(�0.111) * APC2D3_C_N �1.264 (�0.647) * APC2D9_N_N þ �2.538
(�0.751) * KRFPC3478 þ �0.743 (�0.233) * fringNsp3C8B �0.61
(�0.246) * APC2D6_C_S.

Model-1.2 (Divided Set model: Training: 80%, Prediction: 20%):
pKi ¼ 1.7 (�1.658) þ 1.182 (�0.353) * sp2O_aroC_7B þ 0.363

(�0.115) * APC2D3_C_N �1.351 (�0.642) * APC2D9_N_N �2.422
(�0.731) * KRFPC3478–0.772 (�0.269) * fringNsp3C8B �0.169
5

(�0.085) * ringC_sp3S_9B
The statistical parameters for developed models 1.1 and 1.2 have

been presented in Table 2. The symbols have their usual meaning, which
are available in the supplementary material also.

A good number of statistical parameters for model 1.1 and 1.2, which
are related to fitting, internal and external validation and Y-scrambling,
have been tabulated in Table 2. From Table 2, it is clear that R2

tr, CCCtr,
CCCcv, R2

adj. and F satisfy the recommended threshold value, which
shows that the QSAR models are statistically robust with adequate
number of molecular descriptors in the models. The values for different
cross-validation parameters such as R2

cv, RMSEcv, MAEcv, CCCcv, and
Q2

LMO support the statistical robustness of the QSAR models. The
external predictive ability of the models is established by the high values
of R2

ex, Q2F1, Q2F2, Q2F3, and CCCex [12,14,15,33–35].
In short, the developed QSAR models fulfill the recommended

threshold values for many internal and external validation parameters. In
addition, for a better validation of derived models, the model applica-
bility domain (AD) was assured by plotting Williams plots for models 1.1
and 1.2 (see Fig. 3). Therefore, these models are statistically robust and
possess good external predictive ability. To add further, satisfaction of
recommended threshold values for these parameters along with low
correlation among the molecular descriptors point out that these models
are not developed by chance (see supplementary information).

2.1. Interpretation of QSAR models

The models 1.1 and 1.2 have been built using the undivided and



Fig. 5. Exemplification of molecular descriptor APC2D3_C_N.

V.H. Masand et al. Chemometrics and Intelligent Laboratory Systems 206 (2020) 104172
divided dataset, respectively. They comprise four common molecular
descriptors. Therefore, the approach to develop QSAR models using un-
divided and divided dataset has been successful in identification of
greater number of important molecular descriptors, which is useful to
capture maximal information. Thoughwe have compared the activities of
the molecules of the dataset in terms of a single descriptor, we make it
clear that the combined or converse effect of confounding factors/de-
scriptors do have additional influence on the activity profile of the
compounds.

A molecular descriptor with a positive coefficient in both the model is
sp2O_aroC_7 B (number of sp2 hybridized Oxygen atoms within seven
bonds from aromatic Carbon atoms). Since, in the present series of
compounds, sp2 hybridized Oxygen atoms are always present as a part of
carbonyl group (>C––O), therefore it is rational to consider that this
molecular descriptor also points out toward the presence of number of
carbonyl groups in conjugation with aromatic Carbon atoms, that is,
aromatic rings. Therefore, increasing the number of carbonyl groups
within seven bonds from aromatic Carbon atoms could increase the anti-
SARS activity of peptide-type of compounds. This observation is sup-
ported by the fact that molecule number 2 (pKi ¼ 5.658 M) possesses
only two such carbonyl groups, whereas the molecule number 47 (pKi ¼
8.523 M) and 48 (pKi ¼ 8.387 M) have three such carbonyl groups.
Another such comparison is possible between molecule number 30 (pKi
¼ 5.77 M) and 31 (pKi ¼ 7.174 M). This descriptor has been depicted in
Fig. 4. The sp2-hybridized Oxygen and aromatic Carbon atoms have been
shown using blue colour and the seven bonds are red coloured.

The atom-pair molecular descriptor APC2D3_C_N stands for the
presence of Carbon and Nitrogen atoms at a topological distance of 3.
6

This molecular descriptor has a positive coefficient in both the models.
Therefore, higher value of this descriptor could lead to better activity
profile for a molecule. A comparison of 31 (pKi ¼ 7.187 M) with 45 (pKi
¼ 4.854M) as well as among 42 (pKi¼ 7.658M), 43 (pKi¼ 6.097M) and
45 (pKi ¼ 4.854 M) also support this observation. These molecules along
with their APC2D3_C_N values have been depicted in Fig. 5.

An atom pair molecular descriptor with a negative coefficient in both
the models is APC2D9_N_N, which stands for the number of Nitrogen
atoms separated from each other by a topological distance of nine. It
appears that increasing its value could cause diminish the anti-SARS
activity of peptide-type compounds. A comparison of molecule number
51 (pKi ¼ 7.658 M) with 54 (pKi ¼ 6.658 M) and 55 (pKi ¼ 6.658 M)
supports this observation (see Fig. 6). Therefore, such a combination of
Nitrogen atoms should be avoided for better activity.

KRFPC3478 is a finger print molecular descriptor, which represents
the presence of Carbon atom at the position number 3 of an Indole ring.
This descriptor with a negative coefficient in both models has negative
contribution towards the anti-SARS activity of peptide-type compounds.
An analysis of molecule 31–42 indicates that the presence of Indole
moiety does not have negative contribution each time. Hence, it is
rational to consider that the presence of Carbon atom at the position
number 3 of an Indole ring has negative contribution. Therefore, it must
be avoided to have better activity. The molecule 40 (pKi ¼ 5.174 M) and
41 (pKi ¼ 5.125 M) have relatively lower activity than other analogues
bearing Indole ring (see Fig. 7).

Another molecular descriptor with a negative coefficient in model 1.1
and 1.2 and hence with a negative correlation with activity is
fringNsp3C8B. This descriptor represents frequency of occurrence of sp3-



Fig. 6. Pictorial representation of molecular descriptor APC2D9_N_N.
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hybridized Carbon atoms exactly at eight bonds from the ring Nitrogen
atoms. As the number of such Nitrogen atoms increases, the activity
decreases. This observation is supported on comparing molecule 31 (pKi
¼ 7.187 M) and 46 (pKi ¼ 6.167 M). These two molecules are positional
isomers of each other, but they have good difference in their activity.
This could be attributed to higher frequency of occurrence of sp3-
hybridized Carbon atoms exactly at eight bonds from the ring Nitrogen
atoms in case of molecule 46 than the molecule 31. This descriptor has
been shown in Fig. 8 using molecule number 31 and 46 as representa-
tives. The sp3-hybridized Carbon atoms and ring nitrogen atoms have
been highlighted using blue colour, while the eight bonds by red colour.

Though, the molecular descriptors APC2D6_C_S (presence of Carbon
and Sulfur at a topological distance of six) and ringC_sp3S_9B (number of
ring Carbon atoms within nine bonds from sp3-hybridized Sulfur atoms)
convey interrelation of Carbon and Sulfur and their subsequent effect on
activity, but both molecular descriptors provide different level and type
7

of information in varying details. Both molecular descriptors have a
negative coefficient. Therefore, increasing their value could reduce the
anti-SARS activity profile. A comparison of molecule number 42 (pKi ¼
7.658 M) with 43 (pKi ¼ 6.097 M) vindicates this observation. The
molecule 42 has a lower number of ringC_sp3S_9B and a higher value of
APC2D3_C_N than 43.

3. Conclusions

In conclusion, statistically robust QSAR models with good external
predictive ability have been developed, which have successfully high-
lighted a good number of molecular features. The developed models 1.1
to 2.2 satisfy the threshold values for many statistical parameters that are
necessary to establish the quality and usefulness of a QSAR model. Thus,
the developed QSAR models have a good balance of Quantitative and
Qualitative aspects. Therefore, the developed models could be useful for



Fig. 7. Representation of molecular descriptor KRFPC3478.
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Fig. 8. Depiction of molecular descriptor fringNsp3C8B using 31 and 46 as representatives.
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future optimization of the activity profile of the molecules used in the
present dataset.
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