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ABSTRACT
A quantitative structure–activity relationship (QSAR) model was built 
from a dataset of 54 peptide-type compounds as SARS-CoV inhibitors. 
The analysis was executed to identify prominent and hidden structural 
features that govern anti-SARS-CoV activity. The QSAR model was 
derived from the genetic algorithm–multi-linear regression (GA-MLR) 
methodology. This resulted in the generation of a statistically robust 
and highly predictive model. In addition, it satisfied the OECD princi
ples for QSAR validation. The model was validated thoroughly and 
fulfilled the threshold values of a battery of statistical parameters (e.g. 
r2 = 0.87, Q2

loo = 0.82). The derived model is successful in identifying 
many atom-pairs as important structural features that govern the anti- 
SARS-CoV activity of peptide-type compounds. The newly developed 
model has a good balance of descriptive and statistical approaches. 
Consequently, the present work is useful for future modifications of 
peptide-type compounds for SARS-CoV and SARS-CoV-2 activity.
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Introduction

Coronaviruses, which generally infect the respiratory system of humans, other mammals and 
birds, belong to a large group of enveloped non-segmented positive-sense, single-stranded 
RNA viruses with unusually large genomes. These are identified on the basis of club-like 
spikes, which project from their surface. They also possess a unique replication strategy [1–5]. 
When these viruses were first observed under the electron microscope, the characteristic 
appearance of a fringe of large and bulbous surface projections, reminiscent of the ‘crown’, 
was found. Hence, the name ‘coronaviruses’ was given to them [6]. Later, in 1975, the 
International Committee on the Taxonomy of Viruses established the Coronaviridae family 
[7]. Coronaviruses are responsible for various clinical manifestations such as acute and chronic 
respiratory, enteric, gastrointestinal, liver, hepatic, and central nervous system diseases [8,9]. 
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and 
Middle East respiratory syndrome coronavirus (MERS-CoV) caused global outbreaks [10,11]. It 
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was found that these two viruses were transmitted from other animals to humans [12]. 
Another four human coronaviruses, HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HUK1, 
are responsible for the common cold, but may cause severe lower respiratory tract infections 
in patients with underlying medical conditions, and in young children and aged people. In this 
family, a seventh human-infecting coronavirus, SARS-CoV-2, also known as novel coronavirus, 
has been reported from China [13]. As of 8 April 2020, officially 1,519,012 cases have been 
diagnosed and 88,526 deaths due to SARS-CoV-2 have been reported in 225 countries. The 
most affected countries are the United States, Spain, Italy, Germany, France, China, Iran, and 
the United Kingdom. The disease caused by SARS-CoV-2 virus is now known as COVID-19 [14].

SARS-CoV-2 is transmitted by contact or respiratory droplets. Thereby, personal hygiene 
and physical distancing are recommended public health measures to stop further transmis
sion or spread of this virus [15,16]. Unfortunately, the high rate of transmission and relatively 
long incubation period create a higher risk of transmission of COVID-19 [16,17]. Therefore, 
there is an urgent need to develop a cheap and efficient drug for this deadly disease.

A good strategy to combat COVID-19 is to leverage previously reported drugs or com
pounds that have activity against similar coronaviruses. It has been established that the viral 
proteins necessary for SARS-CoV-2 to enter into host cells and consequently replicate are very 
much similar to those linked with SARS-CoV. In addition, synthesis and bio-screening of a new 
drug and its analogues need a lot of time. Therefore, utilising the high resemblance of SARS- 
CoV-2 with SARS-CoV is a good approach to develop a drug candidate. Thus, a therapeutic or 
preventive agent tested against SARS-CoV could be useful for the development of a drug for 
COVID-19. It is rational to believe that a therapeutic agent that has been earlier tested for anti- 
SARS-CoV activity could be a good candidate to be effective against SARS-CoV-2. Some 
previously reported SARS-CoV inhibitors are shown in Figure 1. In short, a faster, inexpensive 
and effective strategy is to leverage drugs and biomolecules previously reported to have 
activity against related coronaviruses such as SARS-CoV.

Computer-aided drug designing is an economical and viable solution to achieve these 
goals, with a good number of benefits such as minimal animal testing, reduced trial and error, 

Figure 1. Different inhibitors reported for SARS-CoV.
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and time saving [18]. It has gained popularity among researchers as a result of the significant 
contribution made by its thriving branches including QSAR (quantitative structure–activity 
relationship), molecular docking, pharmacophore modelling, etc., in development of lead and 
drug candidates.

QSAR analysis comprises identification of relationships between the structural features of 
analogous molecules with bio-activity using statistical methods. A typical QSAR analysis 
involves the use of different branches of science such as chemistry, computer science, 
mathematics, statistics and biology. A general protocol for QSAR analysis involves the follow
ing steps [19–22]: (1) Collection of molecules (referred as a dataset) that have the desired 
activity/property; (2) drawing of structures and optimization to 3D using a suitable method; (3) 
calculation of a large number of molecular descriptors, followed by their pruning using 
a suitable statistical method; (4) generation of a QSAR model using an appropriate feature 
(that is, molecular descriptor) selection algorithm; and (5) appropriate validation of the 
developed QSAR model.

A main objective for executing a QSAR analysis is to identify salient and concealed 
structural patterns/features that have a relationship with the desired activity/property (i.e. 
descriptive QSAR). Another objective of QSAR analysis is to help to predict the activity/ 
property before the wet lab synthesis and bio-testing of a molecule (i.e. statistical QSAR) 
[23]. Nowadays, essential descriptive and statistical aspects of the congeneric molecules 
for future optimization are regularly obtained. A QSAR model that has a good balance of 
descriptive and statistical aspects not only provides additional knowledge about the 
structural patterns that have good relationship with the desired activity/property of 
a drug candidate, but also improves insight into the mechanism of drug action.

Peptide-type compounds have received the attention of researchers because of their 
activity against SAR-CoV [24–27]. Consequently, a large number of peptide-type com
pounds have been synthesized and tested. Recently, α-Ketoamides (peptide-type analo
gues, which are used in the present work) were synthesized and screened for inhibitory 
activity against SARS-CoV and SARS-CoV-2 [28,29]. One of the compounds, 13b, revealed 
equivalent activity against SARS-CoV (IC50 = 0.90 μM) and SARS-CoV-2 (IC50 = 0.67 μM) 
[28]. Despite these efforts, further optimizations of peptide-type compounds are neces
sary to obtain a drug candidate. Moreover, as the analogues of peptide-type compounds 
used in the present work have a variety of substituents as well as positional isomers, it is 
necessary that important hidden relationships of structural features, which cannot be 
identified by visual inspection during structure–activity relationship analysis, should be 
identified using QSAR or a similar technique.

Therefore, in the present work, we have developed a QSAR model for a series of 54 
peptide-type compounds for their anti-SARS-CoV activity. The outcomes could be useful 
to optimize peptide-type compounds for a better activity profile for SARS-COV-2 as well.

Materials and methods

Dataset selection

A dataset of 54 peptide-type compounds with moderate to high activity against main 
protease (MPro) of SARS-CoV has been selected for the present work [25–27,29]. The 
selected peptide-type compounds have IC50 values ranging from 0.23 to 279 µM. The 
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reported activity IC50 values were converted to pIC50 (pIC50 = – logIC50) before QSAR 
analysis. For the sake of simplicity, understanding and to demonstrate the chemical space 
covered by the present dataset, the three most and least active molecules are shown in 
Figure 2. The SMILES notation for all the molecules along with their reported activity 
values IC50, and pIC50 are presented Table S1 (supplementary material).

Structure drawing, optimization and molecular descriptor calculation

ChemSketch 12 Freeware (www.acdlabs.com) and OpenBabel 2.4 [30] were used for 
structure drawing and conversion to 3D structures, respectively. Then, the force field 
MMFF94 available in TINKER [31] was used to optimize the structures’ default settings. 
Open3DAlign [32] was executed for aligning all the molecules in the dataset. In the next 
step, PyDescriptor [33] and PaDEL [34] were used for calculation of molecular descriptors.

Molecular descriptor pruning

Molecular descriptor pruning was essential as PyDescriptor and PaDEL provide more than 
30,000 molecular descriptors including 1D to 3D molecular descriptors such as charge, 
atom-pair, fingerprint descriptors, etc., for each molecule. For this, objective feature 
selection in QSARINS ver. 2.2.2 [35–38] was performed. As a rule, molecular descriptors 
with high co-linearity (|r|>0.90) and nearly constant (> 95%) were excluded. This step is 
necessary to avoid the inclusion of multi-collinear and spurious variables in the genetic 

Figure 2. Variations in activity and chemical structure in the studied dataset of peptide-type 
compounds.
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algorithm–multi-linear regression (GA-MLR) model. The resultant molecular descriptor set 
comprised 603 molecular descriptors only but adequate to cover 1D- to 3D-descriptor 
space with the presence of fingerprint, atom-pair and other molecular descriptors.

QSAR model building and validation

The statistically robust GA-MLR-based QSAR model was derived using QSARINS ver. 2.2.2. 
The derived model was subjected to thorough statistical validation (internal and external), 
Y-randomization and applicability domain analysis as per the OECD principles. The gen
eral procedure for building the QSAR model is as follows [19–21,35,39]:

(1) For the QSAR model derived using divided dataset, the dataset was split randomly, 
using the random splitting option in QSARINS, into a training and a prediction set 
of 44 (i.e. 80% training set) and 10 (i.e. 20% prediction set), respectively. After that, 
the training set was used for model development, and the prediction set for the 
external validation.

(2) QSARINS 2.2.2 was used to build the GA-MLR-based QSAR model using default 
settings using Q2

LOO as a selected fitness function for feature selection and to 
ensure double cross-validation. During model development it was observed that 
there was an increase in the value of Q2

LOO up to six variables, but after that it had 
only minor augmentation (Figure 3). Consequently, molecular descriptor selection 
was limited to a set of six descriptors. This helped to circumvent over-fitting and 
derive an easy and informative QSAR model.

The values for these selected molecular descriptors, which are present in QSAR model, 
are available in the supplementary information.

Figure 3. Correlation of statistical parameters with number of molecular descriptors.
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(1) The model was subjected to internal and external validation, Y-randomization and 
model applicability domain (AD) analysis using QSARINS 2.2.2 as per OECD guide
lines. This ensured the proper validation of the model. The statistical quality and 
strength of a GA-MLR-based QSAR model was judged on the basis of: (a) internal 
validation based on leave-one-out (LOO) and leave-many-out (LMO) procedure (i.e. 
cross-validation (CV)); (b) using external validation; (c) Y-randomization (or 
Y-scrambling); and (d) fulfilling of respective threshold values for the statistical 
parameters: r2

tr ≥ 0.6, Q2
loo ≥ 0.5, Q2

LMO ≥ 0.6, r2 > Q2, r2
ex ≥ 0.6, RMSEtr < RMSEcv, ΔK 

≥ 0.05, CCC ≥ 0.80, Q2-Fn ≥ 0.60, r2 
m ≥ 0.6, (1-r2/ro

2) < 0.1, 0.9 ≤ k ≤ 1.1 or (1-r2/r’o
2) 

< 0.1, 0.9 ≤ k’ ≤ 1.1,| ro
2− r’o

2| < 0.3 with RMSE and MAE close to zero. Any QSAR 
model that did not satisfy any of these criteria was therefore omitted.

Results and discussion

The dataset used in the present study is small in size; however, the presence of a variety of 
substituents, different rings, etc., significantly increased the chemical space covered by 
the peptide-type compounds. In our previous work on QSAR analysis of small and 
moderate-sized datasets [39], we have established that the composition of the training 
and prediction set is very important. The derived QSAR model is as follows:

pIC50 = −0.951 (±0.928) + 0.192 (±0.16) com_sp3C_2A + 0.058 (±0.019) 
notringCplus_SASA + 0.15 (±0.032) SubFPC274 + 0.554 (±0.082) KRFPC3733 − 1.141 
(±0.247) fringNsp2O9B – 0.398 (±0.156) fsp2OringC3B

r2
tr = 0.869, r2

adj. = 0.848, r2
tr – r2

adj. = 0.021, LOF = 0.134, Kxx = 0.283, ΔK = 0.035, 
RMSEtr = 0.266, MAEtr = 0.226, RSStr = 3.111, CCCtr = 0.93, s = 0.29, F = 40.835, r 2

cv 

(Q2
loo) = 0.818, r2-r2

cv = 0.051, RMSEcv = 0.313, MAEcv = 0.268, PRESScv = 4.315, CCCcv 

= 0.903, Q2
LMO = 0.803, r2

Yscr = 0.138, Q2
Yscr = −0.23, RMSEex = 0.424, MAEex = 0.361, 

PRESSext = 1.796, r2
ex = 0.752, Q2-F1 = 0.745, Q2-F2 = 0.744, Q2-F3 = 0.667, CCCex = 0.867, 

r2-ExPy = 0.752, r’o
2 = 0.722, k’ = 0.996, 1-(r2/r’o

2) = 0.04, r’2 m = 0.622, ro
2 = 0.744, 

k = 0.998, 1-(r2-ExPy/ro
2) = 0.011, r2 m = 0.685

The symbols have their usual meaning; the details for same are available in the 
supplementary material. Many statistical parameters have been computed for the derived 
model, which are associated to fitting, internal and external validation and Y-scrambling. 
It is clear that the model satisfies the recommended threshold value for r2

tr, CCCtr, r2
adj. 

and F, which confirms that the QSAR model is statistically acceptable with a sufficient 
number of molecular descriptors in it [40–42]. The values for various internal validation 
parameters such as r2

cv, CCCcv, RMSEcv, MAEcv, CCCcv, and Q2
LMO vindicate the statistical 

robustness of the QSAR model. The high values of r2
ex, Q2F1, Q2F2, Q2F3, and CCCex confirm 

the external predictive ability of the model [42–48].
The derived QSAR model satisfies the suggested threshold values for a good number of 

internal and external validation parameters. In addition, the model AD was ensured by 
plotting the Williams plot (Figure 4). Hence, the model is statistically robust and has good 
external predictive ability. Moreover, fulfilment of recommended threshold values for 
many parameters as well as low r2 value after Y-scrambling indicate that the model is not 
developed by chance (see Figure S1 in supplementary information).
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QSAR model interpretation

Although we have compared the activities of the molecules of the dataset in terms of a single 
descriptor, we make it clear that the combined or converse effect of unknown factors or other 
molecular descriptors could have a significant influence on the activity profile of the 
compounds.

The descriptor KRFPC3733, which represents the fragment -C-C-C-C-N- (moiety A), 
has a positive coefficient in the model. This indicates that the presence of moiety 
A in a molecule increases the activity. This observation is supported when molecule 
24 (pIC50 = 3.585) is compared with 29 (pIC50 = 4.365), 28 (pIC50 = 6.215) and 40 

Figure 4. (a) Graph of experimental vs. predicted pIC50 values; (b) Williams plot.

Figure 5. Comparison of molecules with respect to KRFPC3733.
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(pIC50 = 6.481) (Figure 5). Another such comparison is possible between pairs of 
compounds: molecule number 37 (pIC50 = 5.014) with 21 (pIC50 = 5.022) and 
molecule number 30 (pIC50 = 4.944) with 29 (pIC50 = 4.365).

The descriptor notringCplus_SASA, which represents solvent accessible surface area due to 
non-ring carbon atoms, is present with a positive coefficient. Therefore, a higher value could 
lead to better activity. This observation is supported by the following pairs of molecules: 33 
(pIC50 = 5.445) with 27 (pIC50 = 7.71) and 6 (pIC50 = 4.886) with 8 (pIC50 = 5.167).

fringNsp2O9B represents the number of sp2-hybridized oxygen atoms exactly at nine 
bonds from ring nitrogen atoms. Since, in the present series of peptide-type molecules, sp2- 
hybridized oxygen atoms are present due to the presence of carbonyl group (>C = O), it is 
therefore rational to consider that this molecular descriptor also points out towards the 
presence of number of carbonyl groups in conjugation with ring nitrogen atoms. It has 
negative coefficient. Therefore, as the value of such oxygen atoms increases in a molecule, 
the activity decreases.

The descriptor fsp2OringC3B, which characterizes the number of ring carbon atoms at 
exactly three bonds from sp2-hybridized oxygen atom, provides a different level and type of 
useful information. As stated earlier, the presence of sp2-hybridized oxygen atoms signifies 
the presence of a carbonyl group (>C = O), therefore it is rational to consider that this 
molecular descriptor also points towards the presence of number of carbonyl groups in 
connection with aromatic carbon atoms. It has a negative coefficient in the model, which 
means increasing its value could cause a lower activity profile. This is supported when we 
compare molecule 8 (pIC50 = 5.167) with 11 (pIC50 = 5.638), and 2 (pIC50 = 4.444) with 18 
(pIC50 = 5.538) (Figure 6).

A similar molecular descriptor with positive correlation with activity is SubFPC274, which 
symbolizes the presence of aromatic rings. It has a positive coefficient, meaning that the higher 
the value, the better the activity. In short, the presence of aromatic rings is beneficial for 
activity.

The descriptor com_sp3C_2A denotes the number of sp3-hybrizdized carbon atoms 
within 2 Angstrom from the centre of mass of a molecule. This descriptor has a positive 

Figure 6. Pictorial depiction of molecular descriptor fsp2OringC3B.
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coefficient, which indicates that as the number of such carbon atoms increases, the 
activity also increases. This descriptor has been shown in Figure S2 in the supplementary 
material.

The different molecular descriptors representing different structural features have 
provided meaningful insights into the reasons for differences in the anti-SARS-CoV activity 
of peptide-type compounds. Meanwhile, it is essential to accept that none of the descrip
tors alone could explain the observed distribution of anti-SARS-CoV activities. Thus, each 
individual model depends on the combined use of all selected molecular descriptors.

Conclusion

In the present work, the developed model has a good balance of external predictive 
ability (statistical QSAR), which is indicated by high value of r2

tr = 0.869, r2
cv 

(Q2loo) = 0.818, r2
ex = 0.752, and Q2-F3 = 0.667. The model also has descriptive ability in 

terms of molecular features (descriptive QSAR). The developed model is successful in 
identifying not only salient but hidden correlations of structural features with each other 
as well as with the activity. It could be useful to optimize peptide-type molecules for 
better activity against SARS-CoV and SARS-CoV-2.
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